跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/30 17:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴弘仁
研究生(外文):Hung-Jen Lai
論文名稱:足踝模擬器研發提供足踝副木測試
論文名稱(外文):Ankle-foot simulator development for testing ankle-foot orthoses
指導教授:鄭誠功鄭誠功引用關係
指導教授(外文):Cheng-Kung Cheng
學位類別:博士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:111
中文關鍵詞:足踝模擬器足踝副木疲勞破壞
外文關鍵詞:Ankle-foot simulatorAnkle-foot orthosesFatigue failure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
低溫熱塑型足踝副木的疲勞破壞在臨床上常被觀察到,然而,目前尚無標準的足踝副木評估方式,來增進了解足踝副木是否準備好讓個案所使用。因此,本研究目的為發展一足踝模擬器供測試足踝副木,並利用此模擬器測試前置式足踝副木的疲勞破壞機制。足踝模擬器於矢狀面上的: 循環步行、循環踏步、穿戴足踝副木循環踏步三種測試條件的準確度與重複性已被評估。準確度部分,於比較一組目標步態數據,足踝模擬器在循環步行時的垂直地板反作用力與運動學表現,分別呈現小於80.52N與2.55°的方均根誤差(RMSE)。於循環踏步時,足踝模擬器足踝的蹠屈與背屈角度小於1.25°的方均根誤差。本研究以標準差(SD)評估足踝模擬器的重複性,於三種測試條件下標準差小於9.46N及0.72°。爾後本研究以循環踏步方式測試了五隻前置式足踝副木,其典型的破壞過程被觀察到同時被區分成四個時期。破壞始終初始於前置式足踝副木的蹠骨欄前側與外側欄(或內側欄)交界處,且後續的破壞均由此交界處延續開來。本研究建議前述之交界處必須被補強,或者避免在該交界處產生應力集中,使延長前置式足踝副木的使用壽命。
The fatigue failure of low-temperature thermoplastic ankle-foot orthoses (AFOs) was commonly observed in clinics. However, there was no standard evaluation for the AFOs to enhance the understanding of how AFOs become more readily acceptable to patients. Therefore, this study aimed to develop an ankle-foot simulator (AFS) as a testing apparatus for AFOs, and performed a pilot test to investigate the failure mechanism of anterior ankle-foot orthosis (AAFO). The accuracy and repeatability of the AFS during cyclic walking, cyclic stepping and cyclic stepping with the AAFO in sagittal plane were measured. The root mean square errors (RMSE) of cyclic walking of AFS compared to a target gait data were less than 80.52N and 2.55° in the vertical ground reaction force and in the kinematics, respectively. The RMSE of ankle plantarflexion and dorsiflexion of AFS in the cyclic stepping tests were less than 1.25°. The repeatability was assessed by standard deviation, which were less than 9.46N and 0.72° in all testing conditions. A typical failure progression of five AAFOs was observed and graded for four phases under cyclic stepping test. Failure always initiated at the junction of anterior tarsal bar and lateral (or medial) bar of the AAFOs, from which the rest failures were extended. It is suggested that this junction must be reinforced or prevented the stress concentration to elongate the endurance of AAFO.
摘要 i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF TABLES v
LIST OF FIGURES vi
Chapter 1. INTRODUCTION 1
1.1 Ankle-foot orthoses failure 1
1.2 Is any solution for testing AFOs fatigue failure? 3
1.3 Motivation and purpose of the study 11
Chapter 2. MATERIALS AND METHODS 12
2.1 Ankle-foot simulator design 12
2.1.1 Determining the specifications of AFS 12
2.1.2 Parts design and assembly 15
2.1.3 Circuit structure 22
2.1.4 Software design 27
2.1.5 Setting and concepts of motion control 36
2.2 Ankle-foot simulator self evaluation tests 44
2.2.1 Cyclic walking test 46
2.2.2 Cyclic stepping test 52
2.3 Pilot test on AAFO fatigue failure 56
2.3.1 Preparing AAFO samples 56
2.3.2 The settings of the pilot test 58
Chapter 3. RESULTS 59
3.1 Ankle-foot simulator design and self evaluation test 59
3.1.1 Cyclic walking test 60
3.1.2 Cyclic stepping test 63
3.2 Pilot test on AAFO fatigue failure 65
Chapter 4. DISCUSSIONS 72
Chapter 5. CONCLUSIONS 77
References 78
Appendix A. The drawings of the AFS 81
Appendix B. The LabVIEW program for the AFS 92
1.Affatato S, Leardini A, Leardini W, O’Connor JJ, Viceconti M. Wear results of a new design of ankle prosthesis. J Biomech. 2006; 39, Supplement 1: S143.
2.Aubin PM, Cowley MS, Ledoux WR. Gait simulation via a 6-DOF parallel robot with iterative learning control. IEEE Trans Biomed Eng 2008; 55: 1237-40.
3.Cappa P, Patane F, Pierro MM. A novel device to evaluate the stiffness of ankle-foot-orthosis devices. J Biomech Eng 2003; 125: 913-7.
4.Cappa P, Patane F, Rosa GD. A continuous loading apparatus for measuring three-dimensional stiffness of ankle-foot orthoses. J Biomech Eng 2005; 127: 1025-9.
5.Chen CK, Hong WH, Chu NK, Lau YC, Lew HL, Tang SFT. Effects of an anterior ankle-foot orthosis on postural stability in stroke patients with hemiplegia. Am J Phys Med Rehabil 2008; 87: 815-20.
6.Chen CL, Yeung KT, Wang CH, Chu HT, Yeh CY. Anterior ankle-foot orthosis effects on postural stability in hemiplegic patients. Arch Phys Med Rehabil 1999; 80: 1587-92.
7.Cheng KH. Study of design improvement of low-temperature thermoplastic anterior ankle-foot orthosis. Master Thesis, National Yang-Ming University, 2009.
8.Cheng KH, Lai HJ, Cheng HC, Chen WC, Chou CW, Cheng CK. Investigating the failure factors of low-temperature thermoplastic anterior ankle-foot-orthosis by finite element analysis. In: 4th World Congress on Bioengineering WACBE (July 26-29, 2009, Hong Kong, China).
9.Chu TM. Determination of peak stress on polypropylene ankle-foot orthoses due to weight change using strain gage technology. Exp Tech 2000; 24: 28-30.
10.Chu TM, Reddy NP. Stress distribution in the ankle-foot orthosis used to correct pathological gait. J Rehabil Res Dev 1995; 32: 349-60.
11.Chu TM, Reddy NP, Padovan J. Three-dimensional finite element stress analysis of the polypropylene, ankle-foot orthosis: static analysis. Med Eng Phys 1995; 17: 372-79.
12.Franceschini M, Massucci M, Ferrari L, Agosti M, Paroli C. Effects of an ankle-foot orthosis on spatiotemporal parameters and energy cost of hemiparetic gait. Clin Rehabil 2003; 17: 368-72.
13.Gök H, Küçükdeveci A, Altinkaynak H, Yavuzer G, Ergin S. Effects of ankle-foot orthoses on hemiparetic gait. Clin Rehabil 2003; 17: 137-9.
14.International standard. ISO 22675:2006(E). First edition.
15.International standard. ISO/TR 22676: 2006(E). First edition.
16.Klasson B, Convery P, Raschke S. Test apparatus for the measurement of the flexibility of ankle-foot orthoses in planes other than the loaded plane. Prosthet Orthot Int 1998; 22: 45-53.
17.Lai HJ, Yu CH, Chen WC, Chang TW, Lin KJ, Cheng CK. Development of a walking robot for testing ankle foot orthosis- Robot validation test. In: 13th International Conference on Biomedical Engineering (Dec 3-6, 2008, Singapore).
18.Lehmann JF, Esselman PC, Ko MJ, Smith JC, deLateur BJ, Dralle AJ. Plastic ankle-foot orthoses: Evaluation of function. Arch Phys Med Rehabil 1983; 64: 402-7.
19.Lunsford TR, Ramm T, Miller JA. Viscoelastic properties of plastic pediatric AFOs. J Prosthet Orthot 1994; 6: 3-9.
20.MTS Systems Corporation. Available at: http://www.mts.com/downloads/100_100_034_bio_bro.pdf
http://www.mts.com/stellent/groups/public/documents/library/dev_004315.pdf
21.Nagaya M. Shoehorn-type ankle-foot orthoses: prediction of flexibility. Arch Phys Med Rehabil 1997; 78: 82-4.
22.National Health Insurance Research Database. Taiwan: NHRI publication 2007.
23.NI-motion user manual. USA: National Instruments publication 2006.
24.Wong AMK, Tang FT, Wu SH, Chen CM. Clinical trial of a low-temperature plastic anterior ankle foot orthosis. Am J Phys Med Rehabil 1992; 71: 41-3.
25.Wu SH. An anterior direct molding ankle-foot orthosis. J Occup Ther Assoc Roc 1992; 10: 75-81.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文