跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/13 18:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊衡
研究生(外文):Jun-Heng Chen
論文名稱:反應性共生濺鍍鈦鎢氧化物薄膜之高溫高濕誘發微結構與自潔性能變化
論文名稱(外文):High thermal and humidity-induced changes in microstructural and self-cleaning properties of reactively co-sputtered Ti-W oxide thin films
指導教授:陳錦山洪瑞華
指導教授(外文):Giin-Shan ChenRay-Hua Horng
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:119
中文關鍵詞:鈦鎢氧化物(Ti-W-O)薄膜光誘發自潔特性Na擴散
外文關鍵詞:photo-indused hydrophilityTi-W composite oxide(Ti-W-O)thin-filmsNa diffusion
相關次數:
  • 被引用被引用:2
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
本研究在超高真空的背景下,以固定的總壓(PO/Ar = 3)下,共濺鍍沉積Ti-W複合氧化物(Ti-W-O)薄膜,利用沉積速率與濺鍍功率曲線,控制薄膜組成,以分別康寧玻璃與鈉玻璃為基材,沉積具有光誘發自潔效果之Ti-W複合氧化物薄膜。
第一部份,首先,將WO3沉積在含有Na2O的鹼石灰玻璃(俗稱鈉玻璃)基材,經不同熱處時間以獲得鎢酸鈉的變化將對應到後續的製程薄膜。再利用共生濺鍍(co-sputter)沉積鈦鎢氧化物薄膜,利用濺鍍功率調控以得到各種組成之鈦鎢氧化物薄膜,經過熱處理溫度及氣氛等參數調控以生長自潔效果優良之鈦鎢氧化物薄膜,並採用X光繞射分析與SEM等分析方法以探討表面微結構差異對自潔特性的影響。
第二部份,將最適化核心薄膜分別沉積在有/無含鈉之玻璃(即鈉玻璃與康寧玻璃)與TiO2薄膜試片進行W與Na原子對於鈦鎢氧化物薄膜之電子結構與微結構影響,將造成光催化自潔特性的上升。再利用多種分析儀器進行對此結果進行量測,例如X光電子能譜術之縱深分析(XPS)、拉塞福背向散射能譜術(RBS)及同步輻射中心之X光吸收能譜術(16A、17C)做更進一步探討此光催化自潔特性機理。其結果證實:存在於鈦鎢氧化物薄膜內部的W與Na原子將會改變鈦鎢氧化物薄膜的微結構與其相轉變,進而有效的提升鈦鎢氧化物薄膜的光催化效應。
In this research, Ti-W composite oxide(Ti-W-O) thin-films were fabricated through co-sputter deposition in a high vaccum system, under a constant total pressure (PO2/Ar = 3.0). Utilizing the deposition rates and sputtering power curves, we could control the compositions of the thin-films. Using corning glasses and soda-lime glass as substrates respectively, we deposited Ti-W composite oxide thin films with self-cleaning effects.
In the first section, The first part of the WO3 thin films on the soda-lime glass substrates containing Na2O (AKA Na glasses), obtained by different heat treatment time to changes in sodium tungstate will correspond to the follow-up process film. Symbiotic splashing plating (co-sputter) deposition of titanium tungsten oxide thin films, the sputtering power to require the titanium tungsten oxide thin films with different compositions, the parameters of regulation of the heat treatment temperature and atmosphere to the growth of the hydrophilic anti-fog effect of the fine titanium the tungsten oxide film, and X-ray diffraction analysis and SEM analysis methods to explore the differences of the surface micro-structure of the self-cleaning nature of the impact.
In the second section, the optimization core film deposition with / without Na of glass (sodium glass and Corning glass) and TiO2 film of W and Na atoms for titanium tungsten oxide thin film electronic structure and microstructure , it will cause the increase in photocatalytic self-cleaning properties. Finally we analysed how this result measurement, such as the depth of the X-ray photoelectron spectroscopy (XPS), Rutherford back scattering spectroscopy (RBS) and the Synchrotron Radiation Research Center X-ray absorption spectroscopy (16A, 17C) to do to further explore the mechanism of photocatalytic self-cleaning. The results confirmed that: the existence within the titanium tungsten oxide film W and Na atoms will change the microstructure of titanium tungsten oxide thin films and its phase transition, and thus effectively enhance the photocatalytic effect of titanium tungsten oxide thin films.
中文摘要 II
英文摘要 III
總目錄 V
圖目錄 VII
表目錄 XIII
第一章、緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章文獻回顧 3
2.1 二氧化鈦的種類與晶體結構介紹 3
2.2 TiO2薄膜之自潔特性 8
2.3 TiO2薄膜之基材效應回顧 12
2.4 Ti-W-O化合物薄膜的應用與退火後的衍生行為 15
第三章、實驗方法與步驟 18
3.1 實驗流程(Procedures)指引 18
3.2 濺鍍系統設備 23
3.3反應性磁控濺鍍原理 27
3.4 薄膜特性分析與設備簡介 28
3.4.1感應耦合電漿光譜儀(ICP-OES) 28
3.4.2拉塞福背向散射能譜儀(RBS) 29
3.4.3高解析電子能譜儀(XPS) 31
3.4.4 X光吸收光譜(XAS) 33
第四章、TiO2基自潔薄膜之微結構與自潔特性 35
4.1 TiO2及Ti-W-O系列與WO3薄膜的微結構與高溫氧化效應 36
4.1.1組成定量分析─拉塞福背向散射能譜術 36
4.1.2相鑑定─X光繞射分析 38
4.1.3薄膜微結構型態分析─掃瞄式電子顯微術 43
4.2 自潔性能測試 49
第五章、摻雜物種對薄膜之顯微及電子結構的效應 51
5.1高溫暨高濕熱衍生的薄膜表面形貌及相轉變特性 51
5.2摻雜物種(Na、W)對薄膜組成結構變化的半定量分析 61
5.3摻雜物種(Na、W)對薄膜結構變化的定量分析 71
5.4電子結構與原子周圍環境的變化分析 83
5.5鈦鎢氧化物自潔薄膜之機理探討 93
第六章、結論 96
參考文獻 98
附錄A 105
圖目錄
圖2.1構成TiO2的基本單元﹝TiO6﹞ 4
圖2.2金紅石型(Rutile)與銳鈦礦型(Anatase)相結構 4
圖2.3各種半導體能隙圖 7
圖2.4光激發電子電洞對後,所產生的各種反應路徑 9
圖2.5 TiO2光照親水行為示意圖 11
圖2.6 TiO2薄膜自潔行為示意圖 11
圖2.7 TiO2薄膜沉積於(a)鈉玻璃與(b)石英玻璃上所呈現的掃瞄式電子顯為結構圖 14
圖2.8 太陽光波長分布圖 15
圖2.9經由WO3進行TiO2表面上之電子捕獲模擬示意圖(電子伏特之能量水平位置為使用水銀電極測得) 17
圖3.1 不同功率下分別對應到(a)WO3、(b)TiO2薄膜沉積速率的變化曲線與(c)經由曲線(1)為WO3和曲線(2)為TiO2單獨生長之沉積速率數據所預測之Ti-W-O薄膜沉積曲線以及曲線(3)為實際共生濺鍍曲線,所呈現之相互比較圖譜 19
圖3.2 剛沉積於鈉玻璃上之(a)TiO2、(b)Ti23W7O70、(c)Ti18W11O71、(d)Ti3W22O75、(e)WO3薄膜,所呈現的X光繞射圖譜應 .20
圖3.3 沉積於鈉玻璃與康寧玻璃上之鈦鎢氧化物薄膜試片之與TiO2試片之光照油脂循環測試圖 22
圖3.4 本研究之實驗流程圖 23
圖3.5 本研究所使用之超高真空多靶源磁控濺鍍系統實體照片 24
圖3.6本研究所使用之超高真空多靶源磁控濺鍍系統示意圖 25
圖3.7熱傳導型真空計與電容式真空計之壓力對應曲 26
圖3.8感應耦合電漿光譜儀時體照片 29
圖3.9拉塞福背向散射能譜術示意圖 31
圖3.10高解析能譜術之機制示意圖 32
圖3.11高解析能譜儀器之實體照 32
圖3.12 Ti k-edge之X光吸收光譜範例圖 34
圖3.13 Ti k-edge之X光吸收光譜操作示意圖 34
圖4.1採用不同的Tirf/Wdc濺鍍功率比例之剛沉積於石墨基材的薄膜試片所呈現的RBS能譜及模擬曲線。依據模擬程式可獲得薄膜組成(以Ti含量由高至低排列)分別為(a)TiO2、(b)Ti23W7O70、(c)Ti18W11O71、(d)Ti3W22O75、(e)WO3 37
圖4.2(a)EN-550-8、(b)EN-550-15、(c)EN-550-30、(d)EN-550-60薄膜之X光繞射圖。以上EN型薄膜均生長在鈉玻璃經過550℃不同時間的空氣熱處理。為利於比較,(r1)為剛沉積(未熱處理)的圖譜,而(r2)為生長在康寧玻璃的WO3再經550℃/60分鐘空氣熱處理的試片之相互對照圖譜 39
圖4.3(a)AN-550-30(TiO2)、(b)BN-550-30(Ti23W7O70)、(c)CN-550-30(Ti18W11O71)、(d)DN-550-30(Ti3W22O75)、(e)EN-550-30(WO3)五種薄膜之X光繞射圖譜。(代號後面之括號顯示五種薄膜在剛沉積狀態由RBS定量分析所獲得的薄膜組成) 42
圖4.4(a)AN-550-60(TiO2)、(b)BN-550-60(Ti23W7O70)、(c)CN-550-60(Ti18W11O71)、(d)DN-550-60(Ti3W22O75)、(e)EN-550-60(WO3)五種薄膜的X光繞射圖譜。以上薄膜均生長在鈉玻璃上,而(r1)顯示亦經550℃/60分鐘熱處理的生長在康寧玻璃上的Ti23W7O70薄膜試片之X光繞射圖譜與(b)呈對照比較情況 42
圖4.5(a)AN-550-30、(b)BN-550-30、(c)CN-550-30、(d)DN-550-30、(e)EN-550-30五種單層薄膜試片之FE-SEM上視(左側)與截面(右側)微結構影像 45
圖4.6(a)AN-550-60、(b)BN-550-60、(c)CN-550-60、(d)DN-550-60、(e)EN-550-60五種單層薄膜試片之FE-SEM上視(左側)與截面(右側)微結構影像 48
圖4.7沉積於鈉玻璃與康寧玻璃上之鈦鎢氧化物薄膜試片與TiO2試片進行熱處理550℃/60 min之光照油脂分解曲線圖 50
圖5.1(a)BN-550-60、(b)BN-550-60-5s、(c)BN-550-60-10s、(d)BN-550-60-20s所呈現的SEM上視(左側)與截面(右側)微結構影像暨形貌變化比較。此四種影像分屬經熱處理及再分別經過5、10、20秒水煮以後的試片。 53
圖5.1(續)(e)BN-550-60-30m、(f)BN-550-60-60m、(g)BN-550-60-120m三種經沸水長期(30、60與120分鐘)浸煮的薄膜試片的SEM上視(左側)與截面(右側)微結構影像。 53
圖5.2(a)BN-550-60、(b)BN-550-60-5s、(c)BN-550-60-10s、(d)BN-550-60-20s、(e)BN-550-60-30m、(f)BN-550-60-60m及(g)BN-550-60-120m 7種薄膜式片的X光繞射圖譜。插圖為剛沉積的核心試片(組成為Ti23W7O70)的XRD圖譜,此一圖譜呈現沒有尖銳波鋒的非晶形態 56
圖5.3(a)AN-550-60及(b)AN-550-60-120m與TiO2對照薄膜試片所呈現的SEM上視(左側)與截面(右側)微結構影像 57
圖5.4(a)AN-550-60(熱處理但未經水煮)與(b)AN-550-60-120m(熱處理後再經水煮)的X光繞射圖譜。插圖顯示沒有任何尖銳波鋒的寬廣圖譜,說明剛沉積的TiO2薄膜為非晶質性,或次奈米(?T 3 nm)晶粒結構。 59
圖5.5 由(a)「Na玻璃/Ti23W7O70薄膜」BN型試片及不同後續處理條件所衍生的(b)BN-550-60、(c)BN-550-60-10s、(d)BN-550-60-30m、(e)BN-550-60-60m、(f)BN-550-60-120m試片的高解析能譜術(表面全譜圖) 63
圖5.6 (a)BN、(b)BN-550-60、(c)BN-550-60-10s、(d)BN-550-60-30m、(e)BN-550-60-60m及(f)BN-550-60-120m五種特徵薄膜試片所呈現的XPS縱深分佈圖譜 66
圖5.7(a)AN、(b)AN-550-60、(c)AN-550-60-120m 3種對照性的TiO2薄膜試片所呈現的高解析能譜術(表面全譜圖) 68
圖5.8(a)AN、(b)AN-550-60及(c)AN-550-60-120m 3種對照性的TiO2薄膜試片所呈現的XPS縱深分佈圖譜 69
圖5.9(a)BN、(b)BN-550-60、(c)BN-550-60-10s、(d)BN-550-60-120m四種代表性試片的RBS能譜與模擬分析曲線 73
圖5.10由左至右分別為沉積於鈉玻璃上的最適化鈦鎢氧化物薄膜在不同狀態下,如剛沉積、550℃/60分鐘熱處理及相同熱處理試片分別進行不同沸水浸煮時間(10秒鐘以及15、30、60、80、100、120分鐘),所呈現鎢的整體相對含量曲線 75
圖5.11(a)AN、(b)AN-550-60、(c)AN-550-60-120m,所呈現的元素分析圖譜(RBS) .80
圖5.12由左至右分別為最適化(Ti23W7O70)薄膜沉積於鈉玻璃(BN)與康寧玻璃(BC)試片在不同狀態下之剛沉積、550℃/60分鐘熱處理及相同熱處理試片進行不同沸水浸煮時間(10秒鐘以及5、15、30、45、60、80、100、120分鐘),所呈現鎢的整體相對含量曲線圖 82
圖5.13 為核心(Ti23W7O70)薄膜試片在不同狀態下之剛沉積、550℃/60分鐘熱處理及相同熱處理試片進行不同沸水浸煮時間(15、60、120分鐘)與Ti standard試片,所呈現Ti的X光吸收光譜圖(A)與其疊圖(B)(XANES) 86
圖5.14 為由核心(Ti23W7O70)薄膜試片在不同狀態下之剛沉積、550℃/60分鐘熱處理及相同熱處理試片進行不同沸水浸煮時間(15、60、120分鐘)與WO3試片,所呈現W的X光吸收光譜圖(XANES) 88
圖5.15 為核心(Ti23W7O70)薄膜試片在不同狀態下之剛沉積、550℃/60分鐘熱處理及相同熱處理試片進行不同沸水浸煮時間(15、60、120分鐘)與Ti standard試片,所呈現Ti的X光吸收光譜圖(EXAFS) 90
圖5.16 為由最適化(Ti23W7O70)薄膜試片在不同狀態下之剛沉積、550℃/60分鐘熱處理及相同熱處理試片進行不同沸水浸煮時間(15、60、120分鐘)與WO3試片,所呈現W的X光吸收光譜圖(EXAFS) 92
圖5.17(a)混合型鈦鎢氧化物之介觀孔隙形成示意圖、(b)混合型鈦鎢氧化物進行光催化活性之機理示意圖 95
表目錄
表2.1A-TiO2及R-TiO2多形態結構之相關物性比較 6
表2.2沉積於視窗玻璃上的TiO2薄膜試片經兩種不同升溫速率至550℃熱處理,且對應添加不同厚度的SiO2阻障層所呈現的相結構狀態 12
表2.3沉積於不同基材上的TiO2薄膜試片經不同熱處理溫度所呈現的相結構狀態 13
表3.1鈉玻璃基材之各個元素的重量百分比 28
表5.1 (a)BN、(b)BN-550-60(c)BN-550-60-10s、(d)BN-550-60-15m、(e)BN-550-60-30m、(f)BN-550-60-60m、(g)BN-550-60-80m、(h)BN-550-60-100m、(i)BN-550-60-120m之Ti、W各原子相對數量比與鎢對整體的相對含量比值 75
表5.2 (a)BN、(b)BN-550-60(c)BN-550-60-10s、(d)BN-550-60-15m、(e)BN-550-60-30m、(f)BN-550-60-60m、(g)BN-550-60-80m、(h)BN-550-60-100m、(i)BN-550-60-120m之Ti、W個別原子面積密度以及原子面積(體積)總密度 78
表5.3 (a)BC、(b)BC-550-60(c)BC-550-60-10s、(d)BC-550-60-15m、(e)BC-550-60-30m、(f)BC-550-60-60m、(g)BC-550-60-80m、(h)BC-550-60-100m、(i)BC-550-60-120m之Ti、W各原子相對數量比與鎢對整體的相對含量比值 83
表5.4 依據圖5.15(B)Ti的X光吸收能譜圖中各薄膜試片如:(a)BN、(b)BN-550-60(c)BN-550-60-10s、(d)BN-550-60-15m、(e)BN-550-60-30m與Ti standard試片在光電子能量4.985 keV處的訊號強度之整理數據 86
表5.5 依據圖5.16 W的X光吸收能譜圖中各薄膜試片如:(a)BN、(b)BN-550-60(c)BN-550-60-10s、(d)BN-550-60-15m、(e)BN-550-60-30m與WO3試片在光電子能量10.215 keV處的訊號強度之整理數據 88
表5.6 依據圖5.15 Ti的X光吸收能譜圖中各薄膜試片如:(a)BN、(b)BN-550-60(c)BN-550-60-10s、(d)BN-550-60-15m、(e)BN-550-60-30m與TiO2 sandard試片在半徑長度為1.9~1.93 A位置處的訊號強度之數據整理 90
表5.7 依據圖5.16 W的X光吸收能譜圖中各薄膜試片如:(a)BN、(b)BN-550-60(c)BN-550-60-10s、(d)BN-550-60-15m、(e)BN-550-60-30m與WO3試片在在半徑長度為1.68 A位置處的訊號強度之數據整理 92
1.A. Fujishima, K. Honda, K. Univ and Yokohama, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, p. 37 (1972)
2.H. Tada, A. Hattori, Y. Tokihisa, K Imai, N. Tohge, and S. Ito A patterned-TiO2/SnO2 bilayer type photocatalyst, J. Phys. Chem. B, 140, p.4585 (2000)
3.W. A. Badawy, Improved n-Si/Oxide Junctions for Environmentally Safe Solar Energy Conversion, Sol. Energ. Mat. Sol. Cells, 71, p.281 (2002)
4.A. Hattori, Y. Tokihisa, H. Tada, and S. Ito, Acceleration of Oxidation and Retardation of Reactions in Photocatalysis of a TiO2/SnO2 Bilayer Type Catalyst, J Electrochem. Soc. 147, p.2279 (2000)
5.宋大崙、洪長春、蔡旻樺、洪文琪、梁家榮、黃獻鋒,奈米二氧化鈦製品之台灣市場研究,行政院國家科學委員會科學技術資料中心,(2004)。
6.K. E. Karakitson and X. E. Verykios, Effects of altervalent cation doping of titania s a photocatalyst for water cleavage, J. Phys.Chem, 97, p.1184 (1993).
7.K. Wilke, H. D. Breuer The influence of transition metal doping on the physical properties of titania, J. Photochem.Photobiol. A: Chem., 121, p.49 (1999).
8.M. K. Nazeeruddin, A. Kay, I. Rodicio, R.Humphry-Baker, E.Mueller, P. Liska, N.Vlachopoulos, and M. Grazel, Conversion of Light to Electricity by Cis-X2bis(2,20-Bipyridyl-4,40-Dicarboxylate) ruthenium(II) Charge Transfer Sensitizers(XDCl-,Br-,I-,CN- and SCN-) on Nanocrystalline TiO2 Electrodes, J. Am. Chem.Soc. 115, p.6382 (1993).
9.A. J. Nozik, R. Memming Physical Chemistry of Semiconductor-Liquid Interfaces, J. Phys. Chem. 100,p. 13061 (1996).
10.S. Schiller, G. Beister, W. Sieber, G. Schirmer and E. Hacker, Influence of Deposition Parameters on the Optical and Structural Properties of TiO2 Films Produced by Reactive D.C. Plasmatron Sputtering, Thin Solid Films, 83, p. 239 (1981).
11.S. Miyake, K. Honda, T. Kohno, Y. Setsuhara, M. Satou and A. Chayahara, rutile-type TiO2 formation by ion beam dynamic mixing, J. Vac. Sci. Technol. A, 10, p. 3253 (1992)
12.M. Gilo and N. Croitoru, properties of TiO2 films prepared by ion-assisted deposition using a gridless end-hall ion source, Thin Solid Films, 283, p. 84 (1996).
13.M. D. Wiggins, M. C. Nelson and C. R. Aita, Phase development in sputter deposited titanium dioxide, J. Vac. Sci. Technol., A14, p. 772 (1996).
14.A. Bahtat, M. Bouazaoui, M. Bahtat, C. Garapon, B. Jacquier and J.Mugnier, Up-Conversion Fluorescence Spectroscopy in Er3+: TiO2 Planar Waveguides Prepared by Sol-Gel Process, J. Non-CrystallineSolids, 202, p. 16 (1996).
15.H. Lin, S. Kumon, H. Kozuka and T. Yoko, Electrical Properties of Sol-Gel-Derived Transparent Titania Films Doped with Ruthenium and Tantalum, Thin Solid Films, 315, p. 266 (1998).
16.M. D. Wiggins, M. C. Nelson and C. R. Aita, Phase development in sputter deposited titanium dioxide, J. Vac. Sci. Technol., A14, p. 772 (1996).
17.M. P. Moret, R. Zallen, D. P. Vijay and S. B. Desu, Brookite-richtitania films made by pulsed laser deposition, Thin Solid Films, 366,p. 8 (2000).
18.V. Vancoppenolle, P. Y. Jouan, M. Wautelet, J. P. Dauchot and M.Hecq,Glow discharge mass spectrometry study of the deposition of TiO2 thin films by direct current reactive magnetron sputtering of a Titarget, J. Vac. Sci. Technol. A17, p. 3317 (1999).
19.K. Okimura, Low temperature growth of rutile TiO2 films in modifiedrf magnetron sputtering, Surf. Coatings Technol., 135, p. 286 (2001).
20.A. Kinbara, E. Kusano and S. Baba, Titanium oxide film formationprocess by reactive sputtering, J. Vac. Sci. Technol. A10, p. 1483 (1992).
21.N. Martin, C. Rousselot, C. Savall and F. Palmino, Characterizationsof Titanium Oxide Films Prepared by Radio Frequency Magnetron Sputtering, Thin Solid Films, 287, p. 154 (1996).
22.L. M. Williams and D. W. Hess, Structure Properties of Titanium Dioxide Films Deposition in an RF Glow Discharge, J. Vac. Sci.Technol. A, 1, p. 1810 (1983).
23.R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanable, Light-induced amphiphilic surface, Nature, 388, p. 431 (1997)
24.A Fujishima, Tata N. Rao and Donald A. Tryk , Titanium dioxidephotocatalysis, Journal of Photochemistry & Photobiology C :Photochemistry Reviews 1, p. 1 (2000).
25.M. Schiavello, Photoelectrochemistry, Photocatalysis and Photoreactors (Fundamentals and Developments), NATO ASI Series, (1984).
26.H. Sakai, R. X. Cai, R. Baba, K. Hashimoto, Y. Kubota and A. Fujishima, Detection of Intermediates Formed at the Surface of Photo-Excited TiO2 Film Electrode Using Microelectrode,Photocatalytic ification and Treatment of Water and Air, p. 651 (1993).
27.J. M. White, J. Szanyi and M. A. Henderson, The photon-driven hydrophilicity of titania: a model study using TiO2 (110) and adsorbed trimethyl acetate, J. Phys. Chem. B, 107, p. 9029 (2003)
28.R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi and T. Watanabe, Photogeneration of highly amphiphilic TiO2 surfaces, Adv. Mater., 2, p. 135 (1998)
29.H. Schroeder, in Physics of Thin Films , Vol. 5, (eds.) G. Hass and R.E.. Thun, Academic Press, New York, 10,p.87 (1969).
30.Gnaser, H., Huber, B. and Ziegler, C., Nanocrystalline TiO2 forPhotocatalysis, Encyclopedia of Nanoscience and Nanotechnology,6, p.505 (2004).
31.C. C. Ting, S. Y. Chen and D. M. Liu, Preferential growth of thin rutile TiO2 films upon thermal oxidation of sputtered Ti films, Thin Solid Films, 402, p. 290 (2002)
32.R. W. Mattews, Photooxidation of Organic Impurities in Water Using Thin Films of Titanium DioxideJ, Phys. Chem. 91, p.3328 (1987).
33.M. T. Hyvnen, E. Falck, and I. Vattulainen,J. Phys. Chem. B,Vol. 108,p 8255(2004)
34.N.M. Ghazzal , N. Chaoui, A simple procedure to quantitatively assess the photoactivity of titanium dioxide films, J. Photoch. Photobio. A,Vol. 215, p13(2010)
35.A. Rampaul, I. P. Parkin, Shane A. O. Neill, J. DeSouza, A. Mills and N. Elliott, Titania and tungsten doped titania thin films on glass; active photocatalysts, Polyhedron, 22, p. 35 (2003).
36.G. H. Li, L. Yang, Y. X. Jin, L. D. Zhang, Structural and optical properties of TiO2 thin film and TiO2 + 2wt.% ZnFe2O4 composite film prepared by r.f. sputtering, Thin solid film, 368, p. 163 (2000)
37.R. Norma, de Tacconi , C. R. Chenthamarakshan , K. Rajeshwar ,T. Pauport, D. Lincot, Pulsed electrodeposition of WO3-TiO2 composite films, Electrochem. Commun., 4, p.220 (2003).
38.Donia Beydoun, Rose Amal and Stephen McEvoy, Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution, J. Phys. Chem. B, 104, p. 4387 (2000).
39.L. Spanhel, H. Weller, Photochemistry of semiconductor colloids.22. Electron
injection from illuminated CdS into attached TiO2 and ZnOparticles, A. Henglein, J. Am. Chem. Soc. 109, p.6632. (1987)

40.A. Rampaul, I. P. Parkin, Shane A. O. Neill, J. DeSouza, A. Mills and N. Elliott, Titania and tungsten doped titania thin films on glass; active photocatalysts, Polyhedron, 22, p. 35 (2003)..
41.B. Idriss, P.V. Kamat, Synthesis and Photoelectrochemical properties of TiO2 capped SnO2 surfaces, J Phys. Chem.-US 99 ,p.9182 (1995).
42.K. Vinodgopal, P.V. Kamat, nhanced rates of photocatalytic degradation of an azo dye using SnO2/TiO2 coupled semiconductor thin films, Environ. Sci. Technol. 29 ,p.841 (1995)
43.J. Engweiler, J. Harf, A. Baiker WOx/TiO2Catalysts Prepared by Grafting of Tungsten Alkoxides: Morphological Properties and Catalytic Behavior in the Selective Reduction of NO by NH3, J. Catal. 159 ,p.259 (1996)
44.Y.R. Do, K. Lee, K. Dwight, A. Wold A. The Effect of. WO3 on the Photocatalytic Activity of TiO2 , J. Solid State Chem. 108,p.198. (1994)
45.G. Ramis, G. Busca, C. Cristiani, L. Lietti, P. Forzatti,Characterization of tungsta-titania catalysts, F. Bregani,Langmuir 8 ,p.1744 (1992).
46.L.J. Alemany, L. Lietti, N. Ferlazzo, P. Forzatti, G. Busca, E.Giamello, , activity and physico-chemical characterization of V2O5 -WO3-TiO2 De-NOx-ing catalysts, J. Catal. 155 ,p.117.(1995)
47.G. H. Li, L. Yang, Y. X. Jin, L. D. Zhang, Structural and optical properties of TiO2 thin film and TiO2 + 2wt.% ZnFe2O4 composite film prepared by r.f. sputtering, Thin solid film, 368, p. 163 (2000).
48.R. Norma, de Tacconi , C. R. Chenthamarakshan , K. Rajeshwar ,T. Pauport, D. Lincot, Pulsed electrodeposition of WO3-TiO2 composite films, Electrochem. Commun., 4, p.220 (2003).
49.Donia Beydoun, Rose Amal and Stephen McEvoy, Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution, J. Phys. Chem. B, 104, p. 4387 (2000).
50.S.T. Martin, C.L. Morrison, M.R. Hoffmann , Photochemical mechanism of size quantized vanadium- doped TiO2 particles, J. Phys. Chem.-US 98 ,p.13695 (1994).
51.Tennakone, K., Heperuma, O. A., Bandara, J. M. S., and Kiridena,W. C. B., Semicond, TiO2 and WO3 semiconductor particles in contact: photochemical reduction of WO3 to the non-stoichiometric blue form Semicond, Sci. Technol. 7, p.423 (1992).
52.Song H, Jiang H, Liu X, Meng G, Efficient degradation of organic pollutant with WOx modified nano TiO2 under visible irradiation, J Photochem Photobiol A 421,p 181 (2006)
53.X. Z. Li, F. B. Li, C.L. Yang and W.K. Ge, Photocatalytic activity of WOx-TiO2 under visible light irradiation, J. Photochem. Photobiol., A.,141, p. 209 (2001).
55蔡依敏, 反應性濺鍍沉積鈦鎢複合氧化物薄膜之微結構及親水性特性,逢甲碩士論文,(2009)
55王耀德, 鈦鎢奈米複合氧化物薄膜之磁控濺鍍沉積系統建立與其光觸媒特性, 逢甲碩士論文, (2001)
55K. Takamura, Y. Abe and K. Sasaki, Influence of Oxygen Flow Ratio on the Oxidation of Ti Target and the Formation Process of TiO2 Films by Reactive Sputtering, Vacuum, 74, p. 397(2004)
55汪建民,材料分析,中國材料科學學會出版。
55Tetsu Tatsuma, Shuichi Saitoh,Energy Storage of TiO2-WO3 Photocatalysis Systems in the Gas Phase,Langmuir,18,p7777,(2002)
55.Paz,A. Heller, Photo-oxidatively self-cleaning transparent titanium dioxide films on soda li,e glass:The deleterious effect of sodium contamination,12,p.2759 (1997)
55Toshiya watanabe, Shigemichi Fukayama, Photocatalytic Activity and Photo-Induced Wettability Conversion of TiO2 Thin Film prepared by Sol-Gel Process on aSoda-Lime Glass,19,p.71(2000)
55楊宗燁, 奈米材料之X光吸收光譜檢測與分析, 物理雙月刊,26,P.640(2001)
55胡宇光, 以同步輻射光電子能譜顯微術研究材料性質,物理雙月刊,20,p.517(1998)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top