跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張仲達
研究生(外文):Chung-Ta, CHANG
論文名稱:黃酮類化合物對柔紅黴素交互作用機制之探討
論文名稱(外文):Study on the Molecular Mechanism of Interaction Between Flavonoids and Daunorubicin
指導教授:吳世祿侯庭鏞項千芸
指導教授(外文):Shih-Lu WuTin-Yun HoChien-Yun Hsiang
學位類別:碩士
校院名稱:中國醫藥學院
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:52
中文關鍵詞:黃酮類芹菜素柔紅黴素細胞週期
外文關鍵詞:flavonoidsapigenindaunorubicincell cycle
相關次數:
  • 被引用被引用:2
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
肝癌是世界上最常見的惡性腫瘤之一。尤其在台灣,由於B型肝炎、C型肝炎的盛行及酗酒等因素,使得國人肝癌的罹病率較國外為高,而且發病的族群集中在青壯年人口。所以,肝癌不僅僅是一種威脅個人健康的疾病,對國家的經濟發展也有相當大的損害。目前用於肝癌的治療方法非常多樣,但對於佔大多數的較晚發現、合併肝硬化,甚至發生肝外擴散的病人,經動脈化學藥物栓塞或化學治療則是重要的治療方式。
柔紅黴素主要被用來治療乳癌、食道癌、各種惡性肉瘤以及淋巴癌;近年來,應用在胃癌、胰臟癌、肝癌及膽管癌的治療也有不錯的效果。柔紅黴素的抗癌機轉主要是透過對Topoisomerase II的抑制,因而影響DNA雙股的分離,並進一步抑制DNA合成,使細胞週期中的G2-M期比例增加。
黃酮類是一種天然的多酚化合物,蔬菜、水果、穀物及飲料中都有他們的蹤跡。目前已知它們具有抗發炎、抗氧化、抗病毒、抗過敏及抗癌等療效;甚至有些黃酮類還可以透過抑制抗癌藥在細胞內的代謝或改變細胞膜對抗癌藥的輸送,使細胞內的抗癌藥物濃度上升,而增強抗癌藥的效果。
基於想要進一步暸解黃酮類化合物對接受化學藥物治療中的肝癌病人有何影響,我們利用不同癌化程度的人類肝細胞株來模擬肝癌的各臨床分期,在將不同的藥物加入細胞後,用流式細胞儀進行分析,以G2-M期所佔的比例是否上升做為判斷的準則,試圖搜尋出具有增效作用的藥物。
透過本研究,我們建立了一個以分析細胞週期為基礎的抗癌藥物搜尋平台,並利用此一平台對有代表性的黃酮類化合物做搜尋,結果找到apigenin這個可以促使Chang liver/AP-1細胞產生G2-M arrest的藥物。在對apigenin做進一步的分析後,我們發現apigenin除了可以單獨使用,在50μM以上的濃度使Chang liver/AP-1細胞產生G2-M arrest;它也可與柔紅黴素發生協同作用,在50μM以上的濃度時使Chang liver/AP-1細胞的G2-M期比例上升,因此可能在接受柔紅黴素治療的病人體內發揮增效的功效。
Abstract
Primary hepatocellular carcinoma (HCC) is one of the most common tumors in the world. It is especially prevalent in Taiwan, where the annual incidence is up to 28.71 cases per 100,000 population. The most important reason for the high incidence of HCC is the frequency of chronic infection with hepatitis B virus and hepatitis C virus. In addition, alcohol abuse contributes to the development of HCC. There are many therapeutic strategies for the treatment of HCC. For patients who combined with liver cirrhosis or extra-hepatic metastasis, transarterial chemoembolization and chemotherapy are the important treatment applications in clinic.
Daunorubicin is an effective anti-cancer drug, which has been used for treating a wide variety of cancers, such as breast and esophageal carcinomas, osteosarcoma, Kaposi’s sarcoma, soft-tissue sarcomas, hepatocellular carcinoma, and Hodgkin’s and non-Hodgkin’s lymphomas. Topoisomerase II is likely to be the major target of daunorubicin. Daunorubicin also inhibits DNA synthesis, DNA strand unwinding, and helicase activity. All of these mechanisms contribute to the G2-M arrest in various cells.
Flavonoids are a class of benzo-gamma-pyrone derivatives, which are ubiquitous in vegetables, fruits, grains, and beverages. Previous studies indicate that they have great potentialities in the anti-inflammation, anti-oxidation, anti-virus infection, anti-allergy, and anti-cancer cell proliferation. Some of them also alter intra-cellular metabolism or change the transportation behavior of cell membrane to enhance the effect of anti-cancer drugs.
In order to study the interaction between flavonoids and daunorubicin, we used different hepatic cell lines to represent the different clinical stages of HCC. After the addition of different agents into these cells, the cell distribution was analyzed by flow cytometer. The results revealed that apigenin, a member of flavone, arrested the cells in the G2-M phase in a dose-dependent manner. Apigenin also worked with daunorubicin, resulting in the increase of the cell distribution in G2-M phase. In conclusion, our results suggested that apigenin exhibited the synergic effect with daunorubicin in Chang liver/AP-1 cells to enhance the daunorubicin-induced cell growth inhibition, G2-M arrest, and apoptosis.
目 錄
頁數
中文摘要..................................................... 1
英文摘要........................................................... 2
目錄........................................................... 3
表目錄........................................................... 4
圖目錄........................................................... 5
第一章 前言........................................................... 6
第二章 文獻探討........................................... 7
第三章 研究架構與研究設計................................. 19
第四章 研究材料與統計方法................................. 22
第五章 研究結果........................................................... 25
第六章 討論............................................... 37
第七章 結論與建議......................................... 44
參考文獻..................................................... 46
作者簡歷..................................................... 51
著作權聲明................................................... 52
表目錄
頁數
表2-1 肝癌常用的化學治療藥物.............................. 15
表2-2 本研究所使用的24種黃酮類及其取代基的種類............ 18
表5-1 利用學生氏t 檢定來驗證柔紅黴素對Chang liver/AP-1的影
響.................................................. 29
表5-2 利用學生氏t 檢定來驗證柔紅黴素對HepG2/AP-1的影響.... 30
表5-3 利用學生氏t 檢定來驗證柔紅黴素對人類肝細胞株G2-M arrest
的影響.............................................. 32
表5-4 利用學生氏t 檢定來驗證Apigenin影響細胞週期的效應.... 36
圖目錄
頁數
圖2-1 AP-1在肝臟細胞轉形的過程中扮演重要的角色............ 12
圖2-2 細胞週期(cell cycle)示意圖........................ 13
圖2-3 柔紅黴素(daunorubicin)的化學結構.................. 14
圖2-4 柔紅黴素影響細胞週期的分子機制...................... 16
圖2-5 黃酮類化合物的基本結構.............................. 17
圖3-1 本論文的研究架構.................................... 21
圖5-1 柔紅黴素可影響由TPA所誘發AP-1的活性................. 28
圖5-2 柔紅黴素可使人類肝細胞株產生G2-M arrest............. 31
圖5-3 黃酮類影響細胞週期的效應............................ 33
圖5-4 黃酮類與柔紅黴素影響細胞週期的效應.................. 34
圖5-5 Apigenin影響細胞週期的效應.......................... 35
圖6-1 AP-1調控細胞週期的分子機制.......................... 42
圖6-2 AP-1在腫瘤形成的過程中所扮演的角色.................. 43
參考文獻
民國九十年台灣地區主要死亡原因。行政院衛生署。
民國九十年台灣地區癌症主要死亡原因。行政院衛生署。
賴羿如、項千芸、侯庭鏞。肝細胞轉形之分子機制及分子療程之探討。中國醫藥學院醫學研究所碩士論文(2000)。
Adlercreutz, H, 1990. Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand. Clin. Lab. Invest. Suppl. 201, 3-23.
Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R.J., Rahmsdorf, H.J., Jonat, C., Herrlich, P., and Karin, M. 1987. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49: 729-739.
Angel, P., and Karin, M. 1991. The role of Jun, Fos, and the AP-1 complex in cell proliferation and transformation. Biochim. Biophy. Acta. 1072: 129-157.
Befeler, A.S. and Bisceglie, A.M.D., 2002. Hepatocellular carcinoma: diagnosis and treatment. Gastroenterology 122:1609-1619
Bernstein, L.R., and Colburn, N.H. 1989. AP1/jun function is differentially induced in promotion-sensitive and resistant JB6 cells. Science 244: 566-569.
Birt, DF, Mitchell, D, Gold, B, Pour, P, Pinch, HC, et al.1997. Inhibition of ultraviolet light-induced skin carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid. Anticancer Res. 17, 85-91.
Bismuth, H., Chiche, L., Castaing, D. 1995. Surgical treatment of hepatocellular carcinomas in noncirrhotic liver: experience with 68 liver resections. World J. Surg.19:35—41.
Bruce A. et al., 2002, Molecular biology of the cell, 4th edition. pp 983-1026.
Buja, L.M., Ferrans, V.J., Mayers, R.J., Robert, W.C., Henderson, E.S., 1973. Cardiac ultrastructural changes induced by daunorubicin therapy. Cancer 32, 771-/778.
Caitagirone, S, Rossi, C, Poggi, A., Ranelletti, F.O., Natali, P.G. et al. 2000. Flavonoids apigenin and quercitin inhibit melanoma growth and metastatic potential. Int. J. Cancer. 87, 595-600.
Carroll, K.K., Guthrie, N., So, F.V., and Chambers, A.F. 1998. Anticancer properties of flavonoids, with emphasis on citrus flavonoids. Flavonoids in health and disease. pp 437-446.
Chaumontet, C., Bex, V., Gaillard-Sanchez, I., Seillan-Heberden, C., Suschete, M. et al. 1994. Apigenin and tangeretin enhance gap junction intercellular communication in rat liver epithelial cells. Carcinogenesis 15, 2325-2330.
Cody, V., Middleton, E., Harborne, J.B., and Beretz, A. 1988. Plant flavonoids in biology and Medicine II: Biochemical, Cellular and Medicinal Properties. Alan R. Liss Inc., New York.
Diplock, A.T., Charleux, J.L., Crfozier-Willi, G., Kok, F.J., Rice-Evans, C., Roberfroid, M., Stahl, W., Vina-Ribes, J., 1998. Functional food science and defence against reactive oxygen species. Br. J. Nutr. 80, 77-/112.
Domann, F.E., Levy, J.P., Birrer, M.J., and Bowden, G.T. 1994. Stable expression of a c-JUN deletion mutant in two malignant mouse epidermal cell lines blocks tumor formation in nude mice. Cell Growth Differ. 5: 9-16.
Dong, Z., Birrer, M.J., Watts, R.G., Matrisian, L.M., and Colburn, N.H. 1994. Blocking of tumor promoter-induced AP-1 activity inhibits induced transformation in JB6 mouse epidermal cells. Proc. Natl. Acad. Sci. 91: 609-613.
Elledge S.J., and Harper J.W. 1994. Cdk inhibitors: on the threshold of checkpoints and development. Curr. Opin. Cell Biol. 6: 847-852.
Fornari, F.A., Randolph, J.K., Yalowich, J.C., Ritke, M.K., Gewirtz, D.A. 1994. Interference by doxorubicin with DNA unwinding in MCF-7 breast tumour cells. Mol. Pharmacol. 45, 649-/656.
Gabor, M. 1979. Anti-inflammatory substances of plant origin, in handbook of experimental pharmacology: Anti-inflammatory drugs. pp698-739. Spinger-Verlag, New York.
Gabor, M. 1986. The pharmacology of benzopyrone derivatives and related compounds, Akademiai Kiad, Budapest.
Gewirtz, D.A. 1999. A Critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 57, 727-/741.
Goldberg Y, Nassif II, Pittas A, Tsai L.L., Dynlacht B.D., Rigas B., and Shiff S.J. 1996. the anti-prolferative effect of sulindac and sulindac sulfide on HT-29 colon cancer cells: alternations in tumor suppressor and cell cycle-regulatory proteins. Oncogene 12: 893-901.
Graves, P.R., Yu, L., Schwarz, J.K., Gales, J., Sausville, E.A., O’Connor, P.M., and Piwnica-Worms, H. 2000. The chk1 protein kinase and the cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J. Biol. Chem., 275: 5600-5605.
Gupta, S., Barrett, T., Whitmarsh, A.J., Cavanagh, J., Sluss, H.K., Derijard, B., and Davis, R.J. 1996. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15: 2760-2770.
Gupta, S., Campbell, D., Dérijard, B., and Davis, R.J. 1995. Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267: 389-393.
Halazonetis, T.D., Georgopoulos, K., Greenberg, M.E. and Leder, P. 1988. C-jun dimerizes with itself and c-fos forming complexes of different DNA binding abilities. Cell 55: 917-924.
Harborne, J.B. 1988a. The flavonoids: Advances in Research Since 1986. Chapman & Hall, New York
Harborne, J.B. 1988b. Flavonoids in the environment: Structure-activity relationships, in Plant flavonoids in Biology and Medicine II: Biochemical Cellular and Medicinal Properties. pp 17-28, Alan R. Liss, Inc: New York.
Harbury, P.B., Zhang, T., Kim, P.S., and Alber, T. 1993. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262: 1401-1407.
Harrison’s Principles of Internal Medicine, 14th Ed. pp 579-580
Hartwell, L. H., and Kastan, M. B. 1994. Cell cycle control and cancer. Science, 266:1821-1828.
Havsteen, B. 1984. Flavonoids: A class of natural products of high pharmacological potency. Biochem. Pharmacol. 32: 1141-1148.
Herschman, H.R. 1991. Primary response genes induced by growth factors and tumor promoters. Ann. Rev. Biochem. 60: 281-319.
Ichinose, Y., Takanashi, N., Yano, T., 1995. A phase III trial of oral tegafur and uracil plus cisplatin in patients with inoperable nonsmall cell lung cancer. Cancer 75, 2677-2680.
Jia, S.S., Ma, C.M., Li, Y.H., Hao, J.H. 1992. Glycosides of phenolic acid and flavonoids from the leaves of Glycyrrhiza uralensis Ficsh. Yao Xue Xue Bao. 27(6):441-4.
Jochum, W., Passegue, E., Wagner, E.F. 2001. AP-1 in mouse development and tumorigenesis. Oncogene 30;20(19):2401-12.
Kaufmann, W.K., Levedakuo, E.N., Grady, H.L., Paules, R.S., and Stein, G.H. 1995. attenuation of G2 checkpoint function precedes human cell immortalization. Cancer Res. 55: 7-11,.
Koo, H., Rosalen, P.L., Cury, J.A., Park, Y.K., Bowen, W.H. 2002. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrob. Agents Chemother. 46(5):1302-9.
Kuo, M.L., Lee, K.C., and Lin, J.K. 1992. Genotoxicities of nitropyrenes and their modulation by apigenin, tannic acid, ellagic acid and indole-3-carbinol in the Salmonella and CHO systems. Mutat. Res. 270, 87-95.
Lamb, R.F., Hennigan, R.F., Turnbull, K., Katsanakis, K.D., MacKenzie, E.D., Birnie, G.D., and Ozanne, B.W. 1997. AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44. Mol. Cell Biol. 17: 963-976.
Landschulz, W.H., Johnson, P.F., and McKnight, S.L. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240: 1759-1764.
Lefrak, E.A., Pitha, J., Rosenheim, S., Gottleib, J.A., 1973. A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer 32, 302-/314.
Lepley, D.M., Li, B., Birt, D.F. and Pelling, J.C.. 1996. The chemopreventive flavonoid apigenin induces G2/M arrest in keratinocytes. Carcinogenesis 17: 2367-2375,.
Li, J.J., Rhim, J.S., Schlegel, R., Vousden, K.H., and Colburn, N.H. 1998. Expression of dominant negative Jun inhibits elevated AP-1 and NF-kappa B transactivation and suppresses anchorage independent growth of HPV immortalized human keratinocytes. Oncogene 16: 2711-2721.
Mac Vean, M., Weinberg, W.C., and Pelling, J.C. 2002. Ap21waf1-independent pathway for inhibitory phosphorylation of cyclin-dependent kinase p34cdc2 and concomitant G2-M arrest by the chemopreventive flavonoid apigenin. Mol. Carcinogenesis 33: 36-43,.
Mac Vean, M, Xiao, H, Isobe, K, and Pelling, J.C. 2000. increase in wild-type p53 stability and transactivational activity by the chemopreventive agent apigenin in keratinocytes. Carcinogenesis 21, 633-639.
Middleton, E. 1984. The flavonoids. Trends. Pharmacol. Sci. 277, 375-381.
Middleton, E., and Kandaswami, C. 1993. The impact of plant flavonoids on mammalian biology: Implications for immunity, inflammation and cancer, in The Flavonoids: Advances in Research Science 1986 (Harborne IR ed) pp 619-645. Chapman and Hall, London.
Moragoda, L., Jaszewski, R., and Majumdar, A.P. 2001. Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells. Anticancer Res. 21:873-878.
O''Neil, K.T., Hoess, R.H., and DeGrado, W.F. 1990. Design of DNA-binding peptides based on the leucine zipper motif. Science 249: 774-778.
Sadzuka, Y., Mochizuki, E., Takino, Y., 1995. Mechanism of caffeine modulation of the antitumor activity of adriamycin. Toxicol. Lett. 75, 35-49.
Sato, F., Matsukawa, Y., Matsumoto, K., Nishino, H., and Sakai, T. 1994. Apigenin induces morphological differentiation and G2-M arrest in rat neural cells. Biochem. and Biophys. Res. Com. 204: 578-584.
Shapiro, G.I., Koestner, D.A., Matranga, C.B., and Rollins, B.J. 1999. Flavopiridol induces cell cycle arrest and P53-independent apoptosis in non-small cell lung cancer cell lines. Clin. Cancer Res. 5: 2925-2938,.
Sheer C.J. 1996. cancer cell cycle. Science 274: 1672-1677.
Shuman, J.D., Vinson, C.R., and McKnight, S.L. 1990. Evidence of changes in protease sensitivity and subunit exchange rate on DNA binding by C/EBP. Science 249: 771-774.
Singal, P.K., Deally, C.M.R., Weinberg, L.E., 1987. Subcellular effects of adriamycin in the heart: a concise review. J. Mol. Cell. Cardiol. 19, 817-/828.
Singal, P.K., Iliskovic, N., 1998. Adriamycin cardiomyopathy. N. Engl. J. Med. 339, 900-/905.
Singal, P.K., Li, T., Kumar, D., Danelisen, I., Iliskovic, N., 2000. Adriamycin-induced heart-failure: mechanism and modulation. Mol. Cell. Biochem. 207, 77-/85.
Southern, P.J., and Berg, P. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1: 327-341.
Stochmal, A, Piacente, S, Pizza, C, De Riccardis, F, Leitz, R, Oleszek, W. 2001. Alfalfa (Medicago sativa L.) flavonoids. 1. Apigenin and luteolin glycosides from aerial parts. J. Agric. Food Chem. 49(2):753-8.
Taylor, I.C., and Kingston, R.E. 1990. Factor substitution in a human HSP70 gene promoter: TATA-dependent and TATA-independent interactions. Mol. Cell Bio. 10: 165-175.
Taylor, W.R., and Stark, G.R. 2001. Regulation of the G2-M transition by p53. Oncogene, 20: 1803-1815.
Tyagi, A.K., Singh, R.P., Agarwal, C., Chan, D.C.F., and Agarwal, R. 2002. Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G2-M arrest, and apoptosis. Clin. Cancer Res. 8:3512-3519.
Van Acker, S.A.B.E., Kramer, K., Grimbergen, J.A., Van der Berg, D.J., Van der Vijgh, W.J.F., Bast, A., 1995. Monohydroxyethylrutoside a protector against chronic doxorubicin-induced cardiotoxicity. Br. J. Pharmacol. 115, 1260-1264.
Van Acker, S.A.B.E., Boven, E., Juiper, K., Van der Berg, D.J., Grimbergen, J.A., Kramer, K., Bast, A., Van der Vijgh, W.J.F., 1997. Monohydroxyethylrutoside is a dose dependent cardioprotective agent and does not affect the antitumor activity of doxorubicin. Clin. Cancer Res. 3, 1747-1754.
Vinson, C.R., Sigler, P.B., and McKnight, S.L. 1989. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246: 911-916.
Von Hoff, D.D., Layard, M.W., Basa, P., Davis, H.L., Von Hoff, A.L., Rozwncweig, M., and Muggia, F. M.: Risk factors for doxorubicin-induced congestive heart failure. Ann. Intern. Med. 91: 710-717, 1979.
Wang, C, and Kurzer, M.S. 1997. Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells. Nutr. Cancer 28, 236-247.
Wang, I.K., Lin-Shiau, S.Y., and Lin, J.K. 1999. induction of apoptosis by apigenin and related flavonoids through cytochrome C release and activation of caspase-9 and caspase-3 in leukemia HL-60 cells. Eur. J. Cancer 35, 1517-1525.
Wang, W, Heideman, L, Chung, C.S., Pelling, J.C., Koehler, K.J. et al. 2000. Cell cycle arrest at G2-M and growth inhibition by apigenin in human colon carcinoma cell lines. Mol. Carcinog. 28, 102-110.
Wang, W., Heideman, L., Chung, C.S., Pelling, J.C., Koehler, K.J. and Birt, D.F. 2000. Cell-cycle arrest at G2-M and growth inhibition by apigenin in human colon carcinoma cell line. Mol. Carcinog. 28:102-110.
Yin, F., Giuliano, A.E., Law, R.E., and Van Herle, A.J. 2001. Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells. Anticancer Res. 21: 413-420.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊