跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.131) 您好!臺灣時間:2026/01/16 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李家慶
研究生(外文):Chia-Ching Li
論文名稱:針對非線性離散時間多輸入多輸出系統之適應輸出回授積分型滑動模式控制
論文名稱(外文):ADAPTIVE OUTPUT FEEDBACK INTEGRAL TYPE SLIDING MODE CONTROL FOR NONLINEAR DISCRETE-TIME MIMO SYSTEMS
指導教授:江江盛
指導教授(外文):Chiang-Cheng Chiang
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
論文頁數:51
中文關鍵詞:狀態濾波器強健觀察器模糊邏輯系統適應法則積分滑動模式控制多輸入多輸出系統離散時間系統李亞普諾夫穩定定理可變結構控制
外文關鍵詞:state variable filtersrobust observerfuzzy logic systemsadaptive lawsintegral sliding mode controlmulti-input-multi-output systemsdiscrete-time systemsLyapunov stability theoremvariable structure control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
對於包含不確定項之非線性離散時間多輸入多輸出系統,本篇論文提出了一個積分型滑動模式控制方法來處理系統中的控制問題。首先一個強健觀察器被用來估計受控系統的未知狀態,其次基於積分型滑動面,本論文所提出的控制器讓系統特性可以滿足到達與滑動條件,並加入適應更新法則來估測未知不確定項的上界。藉由李亞普諾夫穩定分析方法,所提出的積分滑動模式控制不僅證實了閉迴路系統的強健穩定性,同時實現精確的估計。提出之方法的可行性將會在本篇論文中以電腦模擬的方式來驗證。
For a class of uncertain nonlinear discrete-time multi-input-multi-output (MIMO) systems, this thesis presents an integral-type sliding mode control (ISMC) method to deal with the control problem. First, a robust observer is used to estimate unknown states of the controlled system. Next, the reaching condition and the sliding condition of the system behavior can be satisfied by the proposed control law based on the integral-type sliding surface. Moreover, some adaptive laws are introduced to estimate the upper bounds of the unknown uncertainties. By the Lyapunov theory, the presented integral sliding mode control not only guarantees the robust stability of the overall closed-loop system, but also achieves the precision estimation. The feasibility of the proposed method will be confirmed by computer simulation in this thesis.
ACKNOWLEDGEMENTS I
ABSTRACT (IN ENGLISH) II
ABSTRACT (IN CHINESE) III
TABLE OF CONTENTS IV
LIST OF FIGURES V
CHAPTER1 INTRODUCTION 1
CHAPTER2 SYSTEM DESCRIPTION AND PRELIMINARIES 3
2.1 Problem Statement 3
2.2 Description of Fuzzy Logic Systems 5
CHAPTER3 OBSERVER-BASED ROBUST ADAPTIVE FUZZY CONTROLLERDESIGN AND STABILITY ANALYSIS 8
3.1 Observer-Based Adaptive Fuzzy Compensator Design 8
3.2 Observer-Based Integral Sliding Mode Controller Design 27
CHAPTER4 RESULTS OF SIMULATION 31
CHAPTER5 CONCLUSION 40
REFERENCES 41
[1]H. Gi. Lee, A. Arapostathis, and S. I. Marcus, “Necessary and Sufficient Conditions for State Equivalence to a Nonlinear Discrete-Time Observer Canonical Form,” IEEE Trans. on Auto. Control, vol. 53, no. 11, pp. 2701-2707, Dec. 2008.
[2]S. Hanba, “On the “Uniform” Observability of Discrete-Time Nonlinear Systems,” IEEE Trans. on Auto. Control, vol. 54, no. 8, pp. 1925-1928, Aug. 2008.
[3]B. Bandyopadhyay, and D. Fulwani, “High-Performance Tracking Controller for Discrete Plant Using Nonlinear Sliding Surface,” IEEE Trans. on Industrial Elec., vol. 56, no. 9, pp. 3628-3637, Sep. 2009.
[4]F. Yang, and Y. Li, “Set-Membership Fuzzy Filtering for Nonlinear Discrete-Time Systems,” IEEE Trans. on Sys., Man, and Cyber. - Part B: Cyber., vol. 40, no. 1, pp. 116-124, Feb. 2010.
[5]X. D. Li, T. F. Xiao, and H. X. Zheng, “Adaptive discrete-time iterative learning control for non-linear multiple input multiple output systems with iteration-varying initial error and reference trajectory,” IET Control Theory Appl., vol. 5, iss. 9, pp. 1131-1139, 2011.
[6]J. Zhang and Y. Xia, “Design of Static Output Feedback Sliding Mode Control for Uncertain Linear Systems,” IEEE Trans. on Industrial Elec., vol. 57, no. 6, pp. 2161-2170, June 2010.
[7]H. H. Choi, “Robust Stabilization of Uncertain Fuzzy-Time-Delay Systems Using Sliding-Mode-Control Approach,” IEEE Trans. on Fuzzy Sys., vol. 18, no. 5, pp. 979-984, Oct. 2010.
[8]P. Ignaciuk and A. Bartoszewicz, “Discrete-Time Sliding-Mode Congestion Control in Multisource Communication Networks with Time-Varying Delay,” IEEE Trans. on Control Sys. Tech., vol. 19, no. 4, pp. 852-867, July 2011.
[9]V. Utkin and J. Shi, “Integral Sliding Mode in Systems Operating under Uncertainty Conditions,” presented at the 35th Conf. Decis. Control, Kobe, Japan, Dec. 1996.
[10]H. Huerta, A. G. Loukianov, and J. M. Cañedo, “Multimachine Power-System Control: Integral-SM Approach,” IEEE Trans. on Industrial Elec., vol. 56, no. 6, pp. 2229-2236, June 2009.
[11]J. Chang, “Dynamic Output Integral Sliding-Mode Control With Disturbance Attenuation.” IEEE Trans. on Auto. Control, vol. 54, no. 11, pp. 2653-2658, Nov. 2009.
[12]Z. Xi and T. Hesketh, “Discrete time integral sliding mode control for overhead crane with uncertainties,” IET Control Theory Appl., vol. 4, iss. 10, pp. 2071-2081, Feb. 2010.
[13]M. Rubagotti, D. M. Raimondo, A. Ferrara, and L. Magni “Robust Model Predictive Control With Integral Sliding Mode in Continuous-Time Sampled-Data Nonlinear Systems,” IEEE Trans. on Auto. Control, vol. 56, no. 3, pp. 556-570, Mar. 2009.
[14]T. Orłowska-Kowalska, M. Kami´nski, and K. Szabat, “Implementation of a Sliding-Mode Controller With an Integral Function and Fuzzy Gain Value for the Electrical Drive With an Elastic Joint,” IEEE Trans. on Industrial Elec., vol. 57, no. 4, pp. 1309-1317, Apr. 2010.
[15]Z. Xi, G. Feng, and T. Hesketh, “Piecewise Integral Sliding-Mode Control for T–S Fuzzy Systems,” IEEE Trans. on Fuzzy Sys., vol. 19, no. 1, pp. 65-74, Feb. 2011.
[16]F. J. Bejarano, L. M. Fridman, and A. S. Poznyak, “Output Integral Sliding Mode for Min-Max Optimization of Multi-Plant Linear Uncertain Systems,” IEEE Trans. on Auto. Control, vol. 54, no. 11, pp. 2611-2620, Nov. 2009.
[17]F. J. Lin, S. Y. Chen, and M. S. Huang, “Intelligent double integral sliding-mode control for five-degree-of-freedom active magnetic bearing system,” IET Control Theory Appl., vol. 5, iss. 11, pp. 1287-1303, Sep. 2010.
[18]S. Bonnabel, “A Simple Intrinsic Reduced-Observer for Geodesic Flow,” IEEE Trans. on Auto. Control, vol. 55, no. 9, pp. 2186-2191, Sep. 2010.
[19]Y. Chang and B. Chen, “A Fuzzy Approach for Robust Reference-Tracking- Control Design of Nonlinear Distributed Parameter Time-Delayed Systems and Its Application,” IEEE Trans. on Fuzzy Sys., vol. 18, no. 6, pp. 1041-1057, Dec. 2010.
[20]J. Dong, Y. Wang, and G. Yang, “Output Feedback Fuzzy Controller Design With Local Nonlinear Feedback Laws for Discrete-Time Nonlinear Systems,” IEEE Trans. on Sys., Man, and Cyber. - Part B: Cyber., vol. 40, no. 6, pp. 1447-1459, Dec. 2010.
[21]W. Wang, Y. Chien, and T. Lee, “Observer-Based T–S Fuzzy Control for a Class of General Nonaffine Nonlinear Systems Using Generalized Projection-Update Laws,” IEEE Trans. on Fuzzy Sys., vol. 19, no. 3, pp. 493-504, June 2011.
[22]F. Liao, K. Y. Lum, J.L. Wang, and M. Benosman, “Adaptive control allocation for non-linear systems with internal dynamics,” IET Control Theory Appl., vol. 4, iss. 6, pp. 909-922, 2010.
[23]P. Angelov and A. Kordon, “Adaptive Inferential Sensors Based on Evolving Fuzzy Models,” IEEE Trans. on Sys., Man, and Cyber. - Part B: Cyber., vol. 40, no. 2, pp. 529-539, Apr. 2010.
[24]G. Zhang, J. Chen, and Z. Lee, “Adaptive Robust Control for Servo Mechanisms With Partially Unknown States via Dynamic Surface Control Approach,” IEEE Trans. on Control Sys. Tech., vol. 18, no. 3, pp. 723-731, May 2010.
[25]W. MacKunis, Z. D. Wilcox, M. K. Kaiser, and W. E. Dixon, “Global Adaptive Output Feedback Tracking Control of an Unmanned Aerial Vehicle,” IEEE Trans. on Control Sys. Tech., vol. 18, no. 6, pp. 1390-1397, Nov. 2010.
[26]S. Tong, Y. Li, G. Feng, and T. Li, “Observer-based adaptive fuzzy backstepping dynamic surface control for a class of non-linear systems with unknown time delays,” IET Control Theory Appl., vol. 5, iss. 12, pp. 1426-1438, 2011.
[27]Z. Zhu, Y. Xia, and M. Fu, “Adaptive Sliding Mode Control for Attitude Stabilization With Actuator Saturation,” IEEE Trans. on Industrial Elec., vol. 58, no. 10, pp. 4898-4890, Oct. 2011.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 江信男、林旻沛、柯慧貞(2005)。台灣地區老人的生理疾病多寡、自覺生理健康、社會支持度與憂鬱嚴重度。臨床心理學刊,2(1),11-22。
2. 呂淑妤、林宗義(2000)。南部社區老人憂鬱症狀盛行率及相關因素研究。中華公共衛生雜誌,19(1),50-60。
3. 呂寶靜(2000)。老人朋友網絡支持功能之初探。社會政策與社會工作學刊,4(2),43-90。
4. 李庚霖、區雅倫、陳淑惠、翁儷禎( 2009 )。“臺灣地區中老年身心社會生活狀況長期追蹤調查”短版CES-D量表之心理計量特性。中華心理衛生學刊,22(4),383-410。
5. 周玉慧、莊義利(2000)。晚年生活壓力、社會支持與老人身心健康之變遷:長期資料分析。人文及社會科學集刊,12(2),281-317。
6. 林藍萍(2007)。老人憂鬱情形:流行病學與防治策略初探。臺灣老人保健學刊,3(1),53-64。
7. 許文耀(2003)。資源流失、因應、社會支持與九二一地震災民的心理症狀之關係。中華心理學刊,45(3),263-277。
8. 曾憲洋、張明永 (1995)。老年期憂鬱性疾病。中華心理衛生學刊,8,5-20。
9. 黃寶園(2010)。社會支持在壓力反應歷程中的中介效果。中華心理衛生學刊,23(3),401-436。
10. 葉雅馨、林家興 ( 2006 )。台灣民眾憂鬱程度與求助行為的調查研究。中華心理衛生學刊,19(2),125-148。
11. 鄭政宗、賴昆宏(2007)。臺中地區長青學苑老人之社會支持、孤寂感、休閒活動參與及生命意義之研究。朝陽學報,12,217-254。