王武彰. 1989. 加工番石榴產期調節方法之研究. 中華農業研究:438-445.王武彰. 1995. 番石榴 台灣農家要覽第二冊第二版. 豐年社, 臺灣.
行政院農業委員會, 2012. 100年農業統計年報 <http://www.coa.gov.tw/view.php?catid=23771>.
林慧玲. 1998. 番石榴果實後熟生理之研究, 國立臺灣大學園藝學研究所博士論文.林慧玲、黃瑞華、王自存. 2005. 番石榴果實之貯運技術. 園產品採後處理技術之研究與應用研討會專刊. 行政院農業委員會農業試驗所編印. p. 21-41.
財政部關稅總局. 2012. 進出口貨物、數量、價值、國家(地區) <http://web.customs.gov.tw/statistic/statistic/mnhStatistic.asp>.
張哲嘉、林宗賢. 1998. 臺灣番石榴生產之現況與改進. 中國園藝 44:116-124.梁佑慎. 2005. 市售新鮮蔬果抗氧化力之研究, 屏東科技大學熱帶農業暨國際合作研究所碩士論文.陳國恩. 2009. 不同後熟特性番石榴品種ACC合成酶cDNA選殖與分析, 國立臺灣大學生物資源暨農學院園藝學系碩士論文.陳彩雲. 2005. 利用FRAP方法分析臺灣水果之抗氧化力, 臺灣大學園藝學研究所碩士論文.楊致福. 1951. 台灣果樹誌. 嘉義農業試驗分所編印.
齊納班、甘佳娜、楊耀祥. 2005. 泰國番石榴之生產 ( Guava Production in Thailand ). 番石榴產業發展研討會.
劉慧瑛、黃淵輝. 1991. 臺灣水果維他命C含量之測定. 中華農業研究 40:280-290.劉德駿. 2010. 不同後熟特性番石榴品種ACC氧化酶cDNA之選殖與分析, 國立臺灣大學生物資源暨農學院園藝學系碩士論文.蔡平里. 1997. 蔬果芬芳錄-千言萬語榴香. 豐年社豐年叢書#972.
謝鴻業. 1998. 臺灣番石榴品種的演進與發展. 農業世界 174:23-25.謝鴻業. 2011. 臺灣番石榴品種改良與產業發展. 番石榴栽培技術與經營管理研討會. p. 9-19. 行政院農業委員會臺中區農業改良場.
謝鴻業、王智立. 2006. 番石榴之種原及育種. 番石榴產業發展研討會專刊. p. 22-42. 國立屏東科技大學農園系編印.
顏秀芬. 1986. 番石榴果實呼吸型式及控制大氣組成貯藏延長其櫃架壽命之研究, 國立臺灣大學園藝學研究所碩士論文.Abeles, F., P. Morgan, and J. Mikal Saltveit, 1992. Ethylene in plant biology, 2nd Edition. Academic Press, New York, USA.
Abeles, F.B. and F. Takeda, 1990. Cellulase activity and ethylene in ripening strawberry and apple fruits. Sci. Hort. 42:269-275.
Adams, D.O. and S.F. Yang, 1977. Methionine Metabolism in Apple Tissue. Plant Physiol 60:892-896.
Adams, D.O. and S.F. Yang, 1979. Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. P Natl Acad Sci USA 76:170-174.
Aharoni, Y., 1968. Respiration of oranges and grapefruits harvested at different stages of development. Plant Physiol 43:99-102.
Akamine, E.K. and T. Goo, 1979. Respiration and ethylene production in fruits of species and cultivars of psidium and species of eugenia. J Am Soc Hortic Sci 104:632-635.
Alexander, L. and D. Grierson, 2002. Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039-2055.
Alonso, J.M., T. Hirayama, G. Roman, S. Nourizadeh, and J.R. Ecker, 1999. EIN2, a bifunctional transducer of ethylene and stress responses in arabidopsis. Science 284:2148-2152.
Argueso, C.T., M. Hansen, and J.J. Kieber, 2007. Regulation of ethylene biosynthesis. J Plant Growth Regul 26:92-105.
Barry, C.S., B. Blume, M. Bouzayen, W. Cooper, A.J. Hamilton, and D. Grierson, 1996. Differential expression of the 1-aminocyclopropane-1-carboxylate oxidase gene family of tomato. Plant J 9:525-535.
Barry, C.S. and J.J. Giovannoni, 2007. Ethylene and fruit ripening. J Plant Growth Regul 26:143-159.
Barry, C.S., M.I. Llop-Tous, and D. Grierson, 2000. The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979-986.
Bassetto, E., A.P. Jacomino, A.L. Pinheiro, and R.A. Kluge, 2005. Delay of ripening of ''Pedro Sato'' guava with 1-methylcyclopropene. Postharvest Biol Tec 35:303-308.
Baur, A.H. and S.F. Yang, 1972. Methionine metabolism in apple tissue in relation to ethylene biosynthesis. Phytochemistry 11:3207-3214.
Benavente, L.M. and J.M. Alonso, 2006. Molecular mechanisms of ethylene signaling in arabidopsis. Mol Biosyst 2:165-173.
Biale, J.B., 1964. Growth maturation and senescence in fruits. Science 146:880-888.
Biale, J.B. and R.E. Young, 1981. Respiration and ripening in fruit-retrospect and prospect. In: Friend J, Rhodes MJC (eds) Recent advances in the biochemistry of fruit and vegetables. Academic, New york.
Binder, B.M., 2008. The ethylene receptors: Complex perception for a simple gas. Plant Sci 175:8-17.
Bleecker, A.B., 1999. Ethylene perception and signaling: an evolutionary perspective. Trends Plant Sci 4:269-274.
Bleecker, A.B., M.A. Estelle, C. Somerville, and H. Kende, 1988. Insensitivity to ethylene conferred by a dominant mutation in arabidopsis thaliana. Science 241:1086-1089.
Bradford, M.M., 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248-254.
Bufler, G., 1984. Ethylene-Enhanced 1-Aminocyclopropane-1-Carboxylic Acid Synthase Activity in Ripening Apples. Plant Physiol 75:192-195.
Burg, S.P. and E.A. Burg, 1962. Role of ethylene in fruit ripening. Plant Physiol 37:179-189.
Burg, S.P. and E.A. Burg, 1965. Ethylene action and ripening of fruits - ethylene influences growth and development of plants and is hormone which initiates fruit ripening. Science 148:1190-1196.
Cancel, J.D. and P.B. Larsen, 2002. Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis. Plant Physiol 129:1557-1567.
Capitani, G., E. Hohenester, L. Feng, P. Storici, J.F. Kirsch, and J.N. Jansonius, 1999. Structure of 1-aminocyclopropane-1-carboxylate synthase, a key enzyme in the biosynthesis of the plant hormone ethylene. J Mol Biol 294:745-756.
Cara, B. and J.J. Giovannoni, 2008. Molecular biology of ethylene during tomato fruit development and maturation. Plant Sci 175:106-113.
Chae, H.S., F. Faure, and J.J. Kieber, 2003. The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in arabidopsis by increasing the stability of ACS protein. Plant Cell 15:545-559.
Chae, H.S. and J.J. Kieber, 2005. Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci 10:291-296.
Chang, C., S. Kwok, A. Bleecker, and E. Meyerowitz, 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539-544.
Chang, S.H., L.S. Lu, N.N. Wang, and Y.Y. Charng, 2008. Negative feedback regulation of system-1 ethylene production by the tomato 1-aminocyclopropane-1-carboxylate synthase 6 gene promoter. Plant Sci 175:149-160.
Chao, Q., M. Rothenberg, R. Solano, G. Roman, W. Terzaghi, and J. Ecker, 1997. Activation of the ethylene gas response pathway in arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133-1144.
Chen, Y.F., M.D. Randlett, J.L. Findell, and G.E. Schaller, 2002. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of arabidopsis. J Biol Chem 277:19861-19866.
Chervin, C., A. El-Kereamy, J.P. Roustan, A. Latche, J. Lamon, and M. Bouzayen, 2004. Ethylene seems required for the berry development and ripening in grape, a non-climacteric fruit. Plant Sci 167:1301-1305.
Christians, M.J., D.J. Gingerich, M. Hansen, B.M. Binder, J.J. Kieber, and R.D. Vierstra, 2009. The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in arabidopsis by controlling type-2 ACC synthase levels. Plant J 57:332-345.
Clark, K.L., P.B. Larsen, X.X. Wang, and C. Chang, 1998. Association of the arabidopsis CTR1 Raf-like kinase with the ETR1 and ERS ethylene receptors. P Natl Acad Sci USA 95:5401-5406.
Dong, J.G., W.T. Kim, W.K. Yip, G.A. Thompson, L. Li, A.B. Bennett, and S.F. Yang, 1991a. Cloning of a cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta 185:38-45.
Dong, J.G., W.T. Kim, W.K. Yip, G.A. Thompson, L.M. Li, A.B. Bennett, and S.F. Yang, 1991b. Cloning of a Cdna-Encoding 1-Aminocyclopropane-1-Carboxylate Synthase and Expression of Its Messenger-Rna in Ripening Apple Fruit. Planta 185:38-45.
Ecker, J.R., 1995. The ethylene signal-transduction pathway in plants. Science 268:667-675.
Ecker, J.R., 2004. Reentry of the ethylene MPK6 module. Plant Cell 16:3169-3173.
El-Kereamy, A., C. Chervin, J.P. Roustan, V. Cheynier, J.M. Souquet, M. Moutounet, J. Raynal, C. Ford, A. Latche, J.C. Pech, and M. Bouzayen, 2003. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol Plantarum 119:175-182.
ElBulk, R.E., E.F.E. Babiker, and A.H. ElTinay, 1997. Changes in chemical composition of guava fruits during development and ripening. Food Chem 59:395-399.
Etheridge, N., B.P. Hall, and G.E. Schaller, 2006. Progress report: ethylene signaling and responses. Planta 223:387-391.
Gagne, J.M., J. Smalle, D.J. Gingerich, J.M. Walker, S.D. Yoo, S. Yanagisawa, and R.D. Vierstra, 2004. Arabidopsis EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. P Natl Acad Sci USA 101:6803-6808.
Golding, J.B., D. Shearer, S.G. Wyllie, and W.B. McGlasson, 1998. Application of 1-MCP and propylene to identify ethylene-dependent ripening processes in mature banana fruit. Postharvest Biol Tec 14:87-98.
Goldschmidt, E.E., 1997. Ripening of citrus and other non-climacteric fruits: A role for ethylene. Acta Horticulturae 463:335-340.
Goldschmidt, E.E., M. Huberman, and R. Goren, 1993. Probing the role of endogenous ethylene in the degreening of citrus-fruit with ethylene antagonists. Plant Growth Regul 12:325-329.
Guo, H.W. and J.R. Ecker, 2003. Plant responses to ethylene gas are mediated by SCF (EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115:667-677.
Guo, H.W. and J.R. Ecker, 2004. The ethylene signaling pathway: new insights. Curr Opin Plant Biol 7:40-49.
Haji, T., H. Yaegaki, and M. Yamaguchi, 2003. Softening of stony hard peach by ethylene and the induction of endogenous ethylene by 1-aminocyclopropane-1-carboxylic acid (ACC). Journal of the Japanese Society for Horticultural Science 72:212-217.
Hall, B.P., S.N. Shakeel, and G.E. Schaller, 2007. Ethylene receptors: ethylene perception and signal transduction. J Plant Growth Regul 26:118-130.
Hansen, M., H.S. Chae, and J.J. Kieber, 2009. Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J 57:606-614.
Hua, J., C. Chang, Q. Sun, and E.M. Meyerowitz, 1995. Ethylene insensitivity conferred by arabidopsis Ers gene. Science 269:1712-1714.
Hua, J., H. Sakai, S. Nourizadeh, Q.H.G. Chen, A.B. Bleecker, J.R. Ecker, and E.M. Meyerowitz, 1998. EIN4 and ERS2 are members of the putative ethylene receptor gene family in arabidopsis. Plant Cell 10:1321-1332.
Huang, Y.F., H. Li, C.E. Hutchison, J. Laskey, and J.J. Kieber, 2003. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221-233.
Iannetta, P.P., L.J. laarhoven, H.V. Davies, and F. harren, 2000. Ethylene production by strawbarry flowers and the ripening fruit. In: Communication to the 9th International workshop on LASER based photoacoustic trace gas detection in life science. Nijmegen: The Netherlands.
Iannetta, P.P.M., L.J. Laarhoven, N. Medina-Escobar, E.K. James, M.T. McManus, H.V. Davies, and F.J.M. Harren, 2006. Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit. Physiol Plant. 127:247-259.
Jacob-Wilk, D., D. Holland, E.E. Goldschmidt, J. Riov, and Y. Eyal, 1999. Chlorophyll breakdown by chlorophyllase: isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development. Plant J 20:653-661.
Jacomino, A.P., R.A. Kluge, C.I.G. Sarantopoulos, and J.M.M. Sigrist, 2001a. Evaluation of plastic packages for Guava refrigerated preservation. Packag Technol Sci 14:11-19.
Jacomino, A.P., C.I.G.D. Sarantopoulos, J.M.M. Sigrist, R.A. Kluge, and K. Minami, 2001b. Sensorial characteristics of "Kumagai" guavas submitted to passive modified atmosphere in plastic packages. J Plast Film Sheet 17:6-21.
Jain, N., K. Dhawan, S. Malhotra, and R. Singh, 2003. Biochemistry of fruit ripening of guava (Psidium guajava L.): Compositional and enzymatic changes. Plant Food Hum Nutr 58:309-315.
Joo, S., Y. Liu, A. Lueth, and S.Q. Zhang, 2008. MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J 54:129-140.
Kader, A.A., 1987. Respiration and gas exchange of vegetable. In: Weichmann J (ed) Postharvest physiology of vegetables. Marcel Dekker, New York.
Kader, A.A. and M.E. Saltveit, 2003. Atmosphere modification. In: Bartz JA, Brecht JK (eds) Postharvest physiology and pathology of vegetables. Marcel Dekker, New York.
Katz, E., P.M. Lagunes, J. Riov, D. Weiss, and E.E. Goldschmidt, 2004. Molecular and physiological evidence suggests the existence of a system II-like pathway of ethylene production in non-climacteric Citrus fruit. Planta 219:243-252.
Kays, S.J. and R.E. Paull, 2004. Metabolic process in harvested products. 2nd. Exon Press, Athens, Georgia. 568pp.
Kende, H., 1993. Ethylene Biosynthesis. Annu Rev Plant Phys 44:283-307.
Kevany, B.M., M.G. Taylor, and H.J. Klee, 2008. Fruit-specific suppression of the ethylene receptor LeETR4 results in early-ripening tomato fruit. Plant Biotechnol J 6:295-300.
Kevany, B.M., D.M. Tieman, M.G. Taylor, V. Dal Cin, and H.J. Klee, 2007. Ethylene receptor degradation controls the timing of ripening in tomato fruit. Plant J 51:458-467.
Kieber, J.J., 1997. The ethylene response pathway in arabidopsis. Annu Rev Plant Phys 48:277-296.
Kieber, J.J., M. Rothenberg, G. Roman, K.A. Feldmann, and J.R. Ecker, 1993. Ctr1, a negative regulator of the ethylene response pathway in arabidopsis, encodes a member of the Raf family of protein-kinases. Cell 72:427-441.
Klee, H. and D. Tieman, 2002. The tomato ethylene receptor gene family: Form and function. Physiol Plantarum 115:336-341.
Klee, H.J., 2004. Ethylene signal transduction. moving beyond arabidopsis. Plant Physiol 135:660-667.
Konze, J.R. and H. Kende, 1979. Interactions of methionine and selenomethionine with methionine adenosyltransferase and ethylene-generating systems. Plant Physiol 63:507-510.
Lashbrook, C.C., D.M. Tieman, and H.J. Klee, 1998. Differential regulation of the tomato ETR gene family throughout plant development. Plant J 15:243-252.
Lelievre, J.M., A. Latche, B. Jones, M. Bouzayen, and J.C. Pech, 1997. Ethylene and fruit ripening. Physiol Plantarum 101:727-739.
Li, H.J. and H.W. Guo, 2007. Molecular basis of the ethylene signaling and response pathway in arabidopsis. J Plant Growth Regul 26:106-117.
Lin, Z.F., S.L. Zhong, and D. Grierson, 2009. Recent advances in ethylene research. J Exp Bot 60:3311-3336.
Lincoln, J.E., A.D. Campbell, J. Oetiker, W.H. Rottmann, P.W. Oeller, N.F. Shen, and A. Theologis, 1993. Le-Acs4, a fruit ripening and wound-Induced 1-aminocyclopropane-1-carboxylate synthase gene of tomato (Lycopersicon-Esculentum) - expression in escherichia-coli, structural characterization, expression characteristics, and phylogenetic analysis. J Biol Chem 268:19422-19430.
K. Joseph, 2006. Ethylene: the gaseous hormone. p571-591. In Lincoln, T. and Z. Eduardo, Plant physiology. 4th ed. Sinauer Associates, Sunderland, USA.
Liu, Y.D. and S.Q. Zhang, 2004. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in arabidopsis. Plant Cell 16:3386-3399.
Lizada, M.C.C. and S.F. Yang, 1979. Simple and sensitive assay for 1-aminocyclopropane-1-carboxylic acid. Anal Biochem 100:140-145.
Ma, B., M.L. Cui, H.J. Sun, K. Takada, H. Mori, H. Kamada, and H. Ezura, 2006. Subcellular localization and membrane topology of the melon ethylene receptor CmERS1. Plant Physiol 141:587-597.
Mcglasson, W.B., 1985. Ethylene and fruit ripening. Hortscience 20:51-54.
Mcmurchie, E.J., W.B. Mcglasso, and I.L. Eaks, 1972a. Treatment of Fruit with Propylene Gives Information About Biogenesis of Ethylene. Nature 237:235-236.
McMurchie, J., W.B. Mcglasso, and I.L. Eaks, 1972b. Treatment of fruit with propylene gives information about biogenesis of ethylene. Nature 237:235-236.
Nakatsuka, A., S. Murachi, H. Okunishi, S. Shiomi, R. Nakano, Y. Kubo, and A. Inaba, 1998. Differential expression and internal feedback regulation of 1-aminocyclopropane-1-carboxylate synthase, 1-aminocyclopropane-1-carboxylate oxidase, and ethylene receptor genes in tomato fruit during development and ripening. Plant Physiol 118:1295-1305.
O''Malley, R.C., F.I. Rodriguez, J.J. Esch, B.M. Binder, P. O''Donnell, H.J. Klee, and A.B. Bleecker, 2005. Ethylene-binding activity, gene expression levels, and receptor system output for ethylene receptor family members from Arabidopsis and tomato. Plant J 41:651-659.
Oetiker, J.H., D.C. Olson, O.Y. Shiu, and S.F. Yang, 1997. Differential induction of seven 1-aminocyclopropane-1-carboxylate synthase genes by elicitor in suspension cultures of tomato (Lycopersicon esculentum). Plant Mol Biol 34:275-286.
Olson, D.C., J.H. Oetiker, and S.F. Yang, 1995. Analysis of Le-Acs3, a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants. J Biol Chem 270:14056-14061.
Oraguzie, N.C., H. Iwanami, J. Soejima, T. Harada, and A. Hall, 2004. Inheritance of the Md-ACS1 gene and its relationship to fruit softening in apple (Malus x domestica Borkh.). Theor Appl Genet 108:1526-1533.
Parkinson, J.S. and E.C. Kofoid, 1992. Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71-112.
Pech, J.C., L. A., and M. Bouzayen, 2004. Ethylene biosynthesis. p. 115-136. In: Peter J. D. (ed.). Plant hormones: biosynthesis, signal transduction, action. Kluwer Academic. Dordrecht, Boston.
Peng, H.P., T.Y. Lin, N.N. Wang, and M.C. Shih, 2005. Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol Biol 58:15-25.
Perin, C., M. Gomez-Jimenez, L. Hagen, C. Dogimont, J.C. Pech, A. Latche, M. Pitrat, and J.M. Lelievre, 2002. Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol 129:300-309.
PerkinsVeazie, P.M., D.J. Huber, and J.K. Brecht, 1996. In vitro growth and ripening of strawberry fruit in the presence of ACC, STS or propylene. Ann Appl Biol 128:105-116.
Picton, S., J.E. Gray, and D. Grierson, 1995. Ethylene genes and fruit ripening. Kluwer academic publishers, Dordrecht Netherlands.
Porat, R., B. Weiss, I. Zipori, and A. Dag, 2009. Postharvest Longevity and Responsiveness of Guava Varieties with Distinctive Climacteric Behaviors to 1-Methylcyclopropene. Horttechnology 19:580-585.
Potuschak, T., E. Lechner, Y. Parmentier, S. Yanagisawa, S. Grava, C. Koncz, and P. Genschik, 2003. EIN3-dependent regulation of plant ethylene hormone signaling by two arabidopsis F box proteins: EBF1 and EBF2. Cell 115:679-689.
Purvis, A.C. and C.R. Barmore, 1981. Involvement of Ethylene in Chlorophyll Degradation in Peel of Citrus-Fruits. Plant Physiol 68:854-856.
Qiao, H., K.N. Chang, J. Yazaki, and J.R. Ecker, 2009. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in arabidopsis. Gene Dev 23:512-521.
Reddy, Y.V. and G.C. Srivastava, 2001. Ethylene biosynthesis and respiration during ripening in mango cultivars. Indian Journal of Plant Physiology 6:361-364.
Reyes, M.U. and R.E. Paull, 1995. Effect of Storage-Temperature and Ethylene Treatment on Guava (Psidium-Guajava L) Fruit Ripening. Postharvest Biol Tec 6:357-365.
Rottmann, W.H., G.F. Peter, P.W. Oeller, J.A. Keller, N.F. Shen, B.P. Nagy, L.P. Taylor, A.D. Campbell, and A. Theologis, 1991. 1-Aminocyclopropane-1-carboxylate synthase in tomato Is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol 222:937-961.
Sakai, H., J. Hua, Q. Chen, C. Chang, L. Medrano, A. Bleecker, and E. Meyerowitz, 1998. ETR2 is an ETR1-like gene involved in ethylene signaling in arabidopsis. P Natl Acad Sci USA 95:5812-5817.
Saltveit, M.E., 1999. Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol Tec 15:279-292.
Sato, T., P.W. Oeller, and A. Theologis, 1991. The 1-aminocyclopropane-1-carboxylate synthase of cucurbita - purification, properties, expression in escherichia-coli, and primary structure determination by DNA-sequence analysis. J Biol Chem 266:3752-3759.
Satoh, S., H. Mori, and H. Imaseki, 1993. Monomeric and dimeric forms and the mechanism-based inactivation of 1-aminocyclopropane-1-carboxylate synthase. Plant Cell Physiol 34:753-760.
Schaller, G.E. and A.B. Bleecker, 1995. Ethylene-binding sites generated in yeast expressing the arabidopsis Etr1 gene. Science 270:1809-1811.
Schaller, G.E. and J.J. Kieber, 2002. Ethylene. American Society of Plant Biologists, USA.
Sebastia, C.H., S.C. Hardin, S.D. Clouse, J.J. Kieber, and S.C. Huber, 2004. Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch Biochem Biophys 428:81-91.
Selvaraj, Y., D.K. Pal, M. Edward Raja, and R.D. Rawal, 1999. Changes in chemical composition of guava fruits during growth and development. Indian Journal of Horticulture 56:10-18.
Seymour, G.B., J.E. Taylor, and G.A. Tucker, 1993. The biochemistry of fruit ripening. Chapman & Hall, London.
Shiu, O.Y., J.H. Oetiker, W.K. Yip, and S.F. Yang, 1998. The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. P Natl Acad Sci USA 95:10334-10339.
Singh, S.P. and R.K. Pal, 2008. Controlled atmosphere storage of guava (Psidium guajava L.) fruit. Postharvest Biol Tec 47:296-306.
Solano, R. and J.R. Ecker, 1998. Ethylene gas: perception, signaling and response. Curr Opin Plant Biol 1:393-398.
Spanu, P., D.G. Grosskopf, G. Felix, and T. Boller, 1994. The apparent turnover of 1-aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein-phosphorylation and dephosphorylation. Plant Physiol 106:529-535.
Srivastava, H.C. and P. Narasimhan, 1967. Physiological studies during the growth and development of different varieties of guava (Psidium guajava L. ). The Journal of Horticultural Science & Biotechnology 42:97-104.
Stepanova, A.N. and J.M. Alonso, 2005. Ethylene signalling and response pathway: a unique signalling cascade with a multitude of inputs and outputs. Physiol Plantarum 123:195-206.
Stewart, I. and T.A. Wheaton, 1972. Carotenoids in citrus - their accumulation induced by ethylene. J Agr Food Chem 20:448-449.
Straeten, D.V.d., L.V. Wiemeersch, H.M. Goodman, and M.V. Montagu, 1990. Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato. P Natl Acad Sci USA 87:4859-4863.
Tatsuki, M., T. Haji, and M. Yamaguchi, 2006. The involvement of 1-aminocyclopropane-1-carboxylic acid synthase isogene, Pp-ACS1, in peach fruit softening. J Exp Bot 57:1281-1289.
Tatsuki, M. and H. Mori, 2001. Phosphorylation of tomato 1-aminocyclopropane-1-carboxylic acid synthase, LE-ACS2, at the C-terminal region. J Biol Chem 276:28051-28057.
Thain, S.C., F. Vandenbussche, L.J.J. Laarhoven, M.J. Dowson-Day, Z.Y. Wang, E.M. Tobin, F.J.M. Harren, A.J. Millar, and D. Van Der Straeten, 2004. Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiol 136:3751-3761.
Theologis, A., P.W. Oeller, L.M. Wong, W.H. Rottmann, and D.M. Gantz, 1993. Use of a Tomato Mutant Constructed with Reverse Genetics to Study Fruit Ripening, a Complex Developmental Process. Dev Genet 14:282-295.
Tieman, D.V., M.G. Taylor, J.A. Ciardi, and H.J. Klee, 2000. The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. P Natl Acad Sci USA 97:5663-5668.
Trainotti, L., A. Pavanello, and G. Casadoro, 2005. Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J Exp Bot 56:2037-2046.
Trebitsh, T., E.E. Goldschmidt, and J. Riov, 1993. Ethylene Induces De-Novo Synthesis of Chlorophyllase, a Chlorophyll Degrading Enzyme, in Citrus-Fruit Peel. P Natl Acad Sci USA 90:9441-9445.
Tsuchisaka, A. and A. Theologis, 2004a. Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. P Natl Acad Sci USA 101:2275-2280.
Tsuchisaka, A. and A. Theologis, 2004b. Unique and overlapping expression patterns among the arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol 136:2982-3000.
Tucker, G.A. and D. Grierson, 1987. Fruit ripening. In: Davies D.D., ed. Biochemistry of plants: a comprehensive treatise. Academic Press, London.
Van der Hoeven, R., C. Ronning, J. Giovannoni, G. Martin, and S. Tanksley, 2002. Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441-1456.
Vandenbussche, F., W.H. Vriezen, J. Smalle, L.J.J. Laarhoven, F.J.M. Harren, and D. Van Der Straeten, 2003. Ethylene and auxin control the Arabidopsis response to decreased light intensity. Plant Physiol 133:517-527.
Varoquaux, P. and I.S. Ozdemir, 2005. Packaging and produce degradation. In: Lamikanra O, Imam S, Ukuku D (eds) produce degradation pathways and prevention. CRC Pess, Boca Raton.
Vendrell, M. and Mcglasso.Wb, 1971. Inhibition of Ethylene Production in Banana Fruit Tissue by Ethylene Treatment. Aust J Biol Sci 24:885-896.
Vogel, J.P., K.E. Woeste, A. Theologis, and J.J. Kieber, 1998. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. P Natl Acad Sci USA 95:4766-4771.
Wang, A., J. Yamakake, H. Kudo, Y. Wakasa, Y. Hatsuyama, M. Igarashi, A. Kasai, T.Z. Li, and T. Harada, 2009a. Null Mutation of the MdACS3 Gene, Coding for a Ripening-Specific 1-Aminocyclopropane-1-Carboxylate Synthase, Leads to Long Shelf Life in Apple Fruit. Plant Physiol 151:391-399.
Wang, K.L.C., H. Li, and J.R. Ecker, 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14:S131-S151.
Wang, K.L.C., H. Yoshida, C. Lurin, and J.R. Ecker, 2004. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428:945-950.
Wang, X.L., H.Z. Kong, and H. Ma, 2009b. F-box proteins regulate ethylene signaling and more. Gene Dev 23:391-396.
Wurgler-Murphy, S.M. and H. Saito, 1997. Two-component signal transducers and MAPK cascades. Trends Biochem Sci 22:172-176.
Yamagami, T., A. Tsuchisaka, K. Yamada, W.F. Haddon, L.A. Harden, and A. Theologis, 2003. Biochemical diversity among the 1-amino-cyclopropane-1-carboxylate synthase isozymes encoded by the Arabidopsis gene family. J Biol Chem 278:49102-49112.
Yamane, M., D. Abe, S. Yasui, N. Yokotani, W. Kimata, K. Ushijima, R. Nakano, Y. Kubo, and A. Inaba, 2007. Differential expression of ethylene biosynthetic genes in climacteric and non-climacteric Chinese pear fruit. Postharvest Biol Tec 44:220-227.
Yang, S.F. and N.E. Hoffman, 1984. Ethylene biosynthesis and its regulation in higher plant. Annual Review of Plant Physiology 35:155-189.
Yip, W.K., J.G. Dong, J.W. Kenny, G.A. Thompson, and S.F. Yang, 1990. Characterization and sequencing of the active-site of 1-aminocyclopropane-1-carboxylate synthase. P Natl Acad Sci USA 87:7930-7934.
Yip, W.K., J.G. Dong, and S.F. Yang, 1991. Purification and characterization of 1-aminocyclopropane-1-carboxylate synthase from apple fruits. Plant Physiol 95:251-257.
Yip, W.K., T. Moore, and S.F. Yang, 1992. Differential accumulation of transcripts for 4 tomato 1-aminocyclopropane-1-carboxylate synthase homologs under various conditions. P Natl Acad Sci USA 89:2475-2479.
Yokotani, N., R. Nakano, S. Imanishi, M. Nagata, A. Inaba, and Y. Kubo, 2009. Ripening-associated ethylene biosynthesis in tomato fruit is autocatalytically and developmentally regulated. J Exp Bot 60:3433-3442.
Yoo, S.-D., Y. Cho, and J. Sheen, 2009. Emergingconnections in the ethylene signaling network. Trends Plant Sci 14:270-279.
Yoo, S.D., Y.H. Cho, G. Tena, Y. Xiong, and J. Sheen, 2008. Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451:789-U781.
Yoshida, H., M. Nagata, K. Saito, K.L.C. Wang, and J.R. Ecker, 2005. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. Bmc Plant Biol 5.
Yoshida, H., K.L.C. Wang, C.M. Chang, K. Mori, E. Uchida, and J.R. Ecker, 2006. The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. Plant Mol Biol 62:427-437.
Yu, Y.B. and S.F. Yang, 1979. Auxin-induced ethylene production and its inhibition by aminoethoxyvinylglycine and cobalt ion. Plant Physiol 64:1074-1077.
Zarembinski, T.I. and A. Theologis, 1994. Ethylene biosynthesis and action - a case of conservation. Plant Mol Biol 26:1579-1597.
Zheng, Q.-L., A. Nakatsuka, and H. Itamura, 2005. Extraction and characterization of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase from wounded persimmon fruit. Journal of the Japanese Society for Horticultural Science 74(2):159-166.