跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.181) 您好!臺灣時間:2025/12/13 21:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳琪淑
研究生(外文):Chi-Sue Wu
論文名稱:高效能液相層析法測定生物樣品中錳(II)、銅(II)與鈷(II)
論文名稱(外文):Determination of manganese (II), copper (II) and cobalt (II) in biological samples by high performance liquid chromatography
指導教授:蔡素珍蔡素珍引用關係
指導教授(外文):Suh Jen-Jane Tasi
學位類別:碩士
校院名稱:靜宜大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:124
中文關鍵詞:鈷(II)銅(II)錳(II)生物樣品高效能液相層析法
外文關鍵詞:HPLCbiological samplesMetalPAR
相關次數:
  • 被引用被引用:5
  • 點閱點閱:250
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:1
本研究利用離子對逆相高效能液相層析法配合紫外光-可見光偵測器測定組織樣品中所含之錳、銅與鈷。實驗結果證明以PAR為錯合試劑時,可成功地在波長450nm處測定Mn2+、Cu2+及Co2+。本研究流動相最佳條件為:甲醇/水(42.5/57.5;v/v),流速為1.2 ml/min醋酸緩衝溶液濃度為8.0×10-4 mol L-1,離子對試劑(TBA-Br)濃度為8.0×10-3
mol L-1,pH=8.0,而錯合試劑濃度為3.0×10-4 mol L-1。偵測結果錳與鈷的線性範圍為0.1-3ppm,銅的線性範圍為0.3-7ppm。錳、銅與鈷的校正曲線分別為y=8.6957×105x+1.5522×105、y=6.4262×105x +0.2797×105與y=19.536×105x-0.1204×105。錳離子偵測極限為18.85ppb,銅離子偵測極限為7.37ppb,鈷離子偵測極限為0.32ppb。
牛肝標準品、豬肝臟、牛肝臟、豬腎及豬腦須先搗碎並烘乾以達到均質的效果,再經高溫爐灰化(800℃,6hr)以去除基質干擾,並使用草酸鈉為還原劑,還原在灰化過程形成的高氧化態錳。牛肝標準品 SRM 1577b的定量結果錳與銅含量分別為10.1±0.21與152.8±1.37,與確認值10.5 ±1.70及160 ±8.0相近,而相對誤差百分率分別為3.8%及4.5%,錳、銅與鈷的回收率分別為91.88±1.12%、92.1±1.01 %與91.94±1.09 %。市售組織樣品定量結果,相對標準偏差皆小於5%,回收率在90~100%。
綜合以上結果得知,利用PAR錯合試劑配合離子對液相層析法/紫外光-可見光偵測法,可成功地應用在偵測肝臟、腎臟及腦組織樣品中錳、銅及鈷元素的定性與定量分析,並具有快速、簡單及靈敏度高等優點。
An ion-pair reversed-phase high-performance liquid chromatographic method with UV-visible spectrophotometric detection is proposed for the simultaneous determination of manganese, copper and cobalt in biological samples. 4-(2-pyridylazo)resorcinol (PAR) chelates of Mn2+, Cu2+ and Co2+ were successfully separated and accurately determined at 450 nm. PAR chelates were eluted within 10 min at a flow-rate of 1.2 ml min-1 with a methanol aqueous mobile phase , CH3OH–water (42.5:57.5, v/v), containing 8.0×10-4 mol L-1 acetate buffer (pH 8.0), 8.0×10-3 mol L –1 TBA-Br and 3.0×10-4 mol L -1PAR. Under the optimum conditions, the linear range was 0.1-3 ppm for Mn2+ and Co2+, and 0.3-7ppm for Cu2+ with correlation coefficients (r2) being greater than 0.999. Calibration curves for Mn2+, Cu2+ and Co2+ were y=8.6957×105x +1.5522×105、y=6.4262×105x+0.2797×105 and y=19.536×105x -0.1204×105, respectively. The detection limits (S/N=3) for the chelates of Mn2+, Cu2+ and Co2+ were 18.85, 7.37 and 0.32 ppb, respectively.
For the purpose of homogeneity, the SRM 1577b, pig liver, bovine liver, pig kidney and pig brain were chopped to small pieces and baked till dryness. The samples were then ashed in elective furnace to remove the matrix interference. Sodium oxalate was used as reducing reagent to reduce the high oxidation state manganese from charred procedure. The proposed method provided a means for analyzing Mn2+ and Cu2+ in SRM bovine liver 1577b with experimental values of 10.1±0.21 and 152.8±1.37. The relative errors were 2.9% and 2.0%. The recoveries of Mn2+, Cu2+ and Co2+ were 91.88±1.12%, 92.1±1.01 % and 91.94±1.09 %, respectively. The RSD for tissue samples from market were lower than 5 %, and the recoveries were in 90~100 %.
In this research, the tissue samples were analyzed successfully after ashed pretreatment. The results were in good agreement with those obtained by flame atomic absorption spectrometry (FAAS).
目錄-----------------------------------------------------------------------I
中文摘要------------------------------------------------------------------IV
英文摘要------------------------------------------------------------------VI
圖目錄 -----------------------------------------------------------------VIII
表目錄---------------------------------------------------------------------X
第一章 緒論----------------------------------------------------------------1
第一節 錳、銅與鈷之簡介----------------------------------------------------3
一. 錳元素與其化合物之簡介-------------------------------------------------3
二. 銅元素與其化合物之簡介-------------------------------------------------4
三. 鈷元素與其化合物之簡介-------------------------------------------------5
第二節 微量元素之測定------------------------------------------------------7
一. 生物樣品---------------------------------------------------------------7
二. 動物組織樣品-----------------------------------------------------------9
第三節 高效能液相層析法---------------------------------------------------14
一. 原理------------------------------------------------------------------14
二. 離子對層析法(Ion-pair chromatography)---------------------------------15
三. 錯合試劑與應用--------------------------------------------------------17
第四節 研究動機與目的-----------------------------------------------------24
第二章 實驗部分-----------------------------------------------------------25
第一節 儀器設備-----------------------------------------------------------25
第二節 化學試劑與標準溶液-------------------------------------------------26
第三節 試劑溶液製備-------------------------------------------------------28
第四節 實驗步驟-----------------------------------------------------------28
第三章 分析方法之建立-----------------------------------------------------34
一. 錯合試劑的選擇--------------------------------------------------------34
二. 波長之選擇------------------------------------------------------------37
三. 緩衝溶液之pH值--------------------------------------------------------42
四. 金屬離子與PAR之錯合作用-----------------------------------------------50
五. PAR錯合試劑濃度與錯合時間---------------------------------------------52
六. 移動相之組成與流速----------------------------------------------------55
1. 離子對試劑的探討-------------------------------------------------------55
2. 有機溶劑的選擇與含量---------------------------------------------------58
3. 移動相流速的影響-------------------------------------------------------65
七. 干擾問題--------------------------------------------------------------66
第四章 真實樣品分析-------------------------------------------------------75
一. 樣品前處理------------------------------------------------------------75
二. 還原試劑之選擇--------------------------------------------------------79
三 結果與討論-------------------------------------------------------------85
(一). 肝臟組織------------------------------------------------------------85
1. 豬肝樣品的偵測---------------------------------------------------------85
2. 牛肝樣品的偵測--------------------------------------------------------100
(二). 豬腎臟組織---------------------------------------------------------104
(三). 豬腦組織-----------------------------------------------------------104
(四). 牛肝標準品的偵測---------------------------------------------------111
第五章 總結--------------------------------------------------------------115
參考文獻-----------------------------------------------------------------117
1. J. Mann, A. S. Truswell, “ Essentials of human nutrition ”. Oxford, 2002.
2. B. L. O’Dell, R. A. Sunde, “ Handbook of nutritionally essential mineral elements ”. Marcel Dekker, 1997.
3. D. M. Watkin, “ Handbook of nutrition, health and aging ”. Noyes, 1983.
4. A. S. Prasad, “ Essential and toxic trace elements in human health and disease: an update ”. Wiley-Liss, 1994.
5. T. Okuno,Y. Shimamura, M. Mizuno, S. Miyake, Y. Itokawa, J. Takada, R. Matsushita and M. Koyama, “ Trace element in hepatoma tissue ”. Trace Elem. Med., 5 (1988) 130.
6. 大美百科全書,光復書局,1991.
7. 中國大百科全書,中國大百科全書出版社,1995.
8. H. M. Liu, S-J. J. Tsai, F. C. Cheng, and S.Y. Chung. “Determination of trace manganese in the brain of mice subjected to manganese deposition by graphite furnace atomic absorption spectrometry”, Anal. Chim. Acta., 405 (2000) 197-203.
9. 內科臨床雜誌72:652,1993.
10. P. Vinas, M. P. Martinez and M. H. Cordoba, “ Rapid determination of selenium, lead and cadmium in body good samples using electrothermal atomic absorption spectrometry and slurry atomization ”. Anal. Chim. Acta 412 (2000) 121~130.
11. P.R.M. Correra, E. Oliveira, P. V. Oliveira, “ Simultaneous determination of Cd and Pb in foodstuffs by electrmthermal atomic absorption spectrometry ”. Anal. Chim. Acta 405 (2000) 205~211.
12. M. Tuzen, “ Determination of heavy metals in fish samples of the middle black Sea (Turkey) by graphite furnace atomic absorption spectrometry ”. Food chem. 80 (2003) 119~123.
13. P. Martins, D. Pozebon, V. L. Dressler, G. A. Kemieciki, “ Determination of trace elements in biological materials using tetramethylammonium hydroxide for sample preparation ”. Anal. Chim. Acta 470 (2002) 195~204.
14. R. Ringmann and K. Boch, W. Marquardt, M. Schuster, G. Schlemmer, P. Kainrath, “ Microwave-assisted digestion of organoarsenic compounds for the determination of total arsenic in aqueous, biological, and sediment samples using flow injection hydride generation electrothermal atomic absorption spectrometry ”. Anal. Chim. Acta 452 (2002) 207~215.
15. M.G.M. Alam, E.T. Snow, A. Tanaka, “ Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh ”. Sci. Total Environ. 308 (2003) 83-96.
16. K. S. Rao, T. Balaji, T. P. Rao, Y. Babu, G.R.K. Naidu, “ Determination of iron, cobalt, nickel, manganese, zinc, copper, cadmium and lead in human hair by inductively coupled plasma-atomic emission spectrometry ”. Spectrochim. Acta. Part 57 (B) (2002) 1333-1338.
17. R. Djingova, H. Heidenreich, P. Kovacheva, B. Markert, “ On the determination of platinum group elements in environmental materials by inductively coupled plasma-atomic emission spectrometry and microwave digestion ”. Anal. Chim. Acta 489 (2003) 245-251.
18. E. Sanna, A. Liguori, L. Palmas, M. R. Soro and G. Floris, “ Blood and hair lead levels in boys and girl, living in two Sardinian towns at different risks of lead pollution ”. Ecotoxicol. Environ. Saf. 55 (2003) 293-299.
19. Y. S. Wang, H. F. Zhao, T. X. Zhang, “ Determination of Zinc Contents in Rabbits with Cerebral Ischemia by NAA and ICP-AES ”. Biol. Trace Elem. Res. 71/72 (1999) 617-621.
20. H. Feng, T. Wang, S.F.Y. Li, “ Sensitive determination of trace-metal elements in tea with capillary electrophoresis by using chelating agent 4-(2-pyridylazo) resorcinol (PAR) ”. Food Chem. 81 (2003) 607-611.
21. N. Iki, H. Hoshino & T. Yotsuyanagi, “ Ion-associationcapillary electrophoresis, New separation mode for equally and highly charged metal chelates ”, J. Chromatogr. A 652 (1993) 539–546.
22. B. F. Liu, L. B. Liu & J. K. Cheng, “ Analysis of metal complexes in the presence of mixed ion pairing additives in capillary electrophoresis ”. J. Chromatogr. A 848 (1999) 473–484.
23. E. V. Alonso, A. G. de Torres, J.M. C. Pavon, “ Determination of trace heavy metals in biological samples by inductively-coupled plasma atomic emission spectrometry after extraction with 1,5-bis-(di-2 -pyridylmethylene)thiocarbonohydrazide ”. Talanta 43(1996) 593-501.
24. G. Collado, C. B. Ojeda, A. G. de Torres, J. M. C. Pavon, “ Determination of cobalt in biological samples by electrothermal atomic absorption spectrometry after extraction with 1,5-bis(di-2-pyridylmethylene) thiocarbohydrazide ”. Analusis 23 (1995) 224-227.
25. X. Liu, Z. Fang, “ Flame atomic absorption spectrometric determination of cobalt in biological materials using a flow-injection system with on-line preconcentration by ion-pair adsorption ”. Anal. Chim. Acta. 316 (1995) 329-335.
26. C. F. Mason, A. Stephenson, “ Metals in tissues of European otters (Lutra lutra) from Denmark, Great Britain and Ireland ”. Chemosphere 44 (2001) 351-353.
27. E. Andrasi, S. Igaz, N. Szoboszlai, E. Farkas, Z. Ajtony, “ Several methods to determine heavy metals in the human brain ”. Spectrochim. Acta, Part 54 (B) (1999) 819-825.
28. A. N. Anthemidis, G. A. Zachariadis and J. A. Stratis, “ Cobalt ultra-trave on-line preconcentration and determination using a PTFE turnings packed column and electrothermal atomic absorption spectrometry. Applications in natural waters and biological samples ”. J. Anal. At. Spectrom 17 (2002) 1330-1334.
29. W. J. Lough and I. W. Wainer, “ High Performance Liquid Chromatography Fundamental Principles and Practice ”. Chapman & Hall, 1995.
30. K. Ueno, T. Imamura, K.L. Cheng, “ Handbook of organic analytical reagents”. Boca Raton, Fla., c1992.
31. J.M. Sanchez, O. Obrezkov, V. Salvado, “ Separation of some platinum group metal chelates with 8-hydroxyquinoline by various high -performance liquid chromatographic methods ”. J. Chromatogr. A 871 (2000) 217–226.
32. B. Paull, E. Twohill, W. Bashir, “ Determination of trace cadmium in environmental water samples using ion-interaction reversed-phase liquid chromatography with fluorescence detection ”. J. Chromatogr. A 877 (2000) 123-132.
33. I. Narin, M. Soylak, “ The uses of 1-(2-pyridylazo) 2-naphtol(PAR) impregnated Ambersorb 563 resin on the solid phase extraction of traces heavy metal ions and their determinations by atomic absorption spectrometry ”. Talanta 60 (2003) 215-221.
34. S. Oszwaldowski, J. Jakubowska, “ Simultaneous determination of zirconium and hafnium as ternary complexes with 5-Br-PADAP and fluoride using solid-phase extraction and reversed-phase liquid chromatography ”. Talanta 60 (2003) 643-652.
35. X.J. Ding, S.f. Mou, K.Liu, A. Siriraks, J. Riviello, “ Ion chromato -graphy of heavy and transition metals by on- and post-column derivatizations ”. Anal. Chim. Acta 407 (2000) 319–326.
36. L. V. Mulaudzi, J. F. van Staden., Raluca I. Stefan, “ On-line determination of iron(II) and iron(III) using a spectrophotometric sequential injection system ”. Anal. Chim. Acta 467 (2002) 35-49.
37. T. Takeuchi, S. Inoue, M. Yamamoto, M. Tsuji, T. Miwa, “Fluorimetric determination of magnesium and aluminum via complexation with oxine in high-performance liquid chromatography ”. J. Chromatogr. A 910 (2001) 373~376.
38. H. Z. Lian, Y. F. Kang, A. Yasin, S. P. Bi, D. L. Shao, Y. J. Chen, L. M. Dai, L. C. Tian, “ Determination of aluminum in environmental and biological samples by reversed-phase high-performance liquid chromato -graphy via pre-column complexation with morin ”. J. Chromatogr. A 993 (2003) 179~185.
39. A. A. Almeida, X. Jun, J. L.F.C. Lima, “ Determination of transition metals in human hair by high-performance liquid chromatography using sodium hexadecane-sulfonate coated columns ”. Talanta 50 (1999) 253~259.
40. N.Vachirapatama, G.W. Dicinoski, A.T. Townsend, P.R. Haddad, “ Determination of vanadium as 4-(2-pyridylazo)resorcinol-hydrogen peroxide ternary complexes by ion-interaction reversed-phase liquid chromatography ”. J. Chromatogr. A 956 (2002) 221-227.
41. X. He, M. Tubino, A. V. Rossi, “ Selective and sensitive spectrophoto -metric determination of total vanadium with hydrogen peroxide and 4-(2-pyridylazo)-resorcinol ”. Anal. Chim. Acta 389 (1999) 275-280.
42. Y. Komazaki, T. Inoue and S. Tanaka, “ Automated measurement system for H2O2 in the atmosphere by diffusion scrubber sampling and HPLC analysis of Ti(IV)-PAR- H2O2 complex ”. Analyst 126 (2001) 587-593.
43. S. Srijaranai, R. Burakham, R.L. Deming, T. Khammeng, “ Simplex optimization of ion-pair reversed-phase high performance liquid chromatographic analysis of some heavy metals ”. Talanta 56 (2002) 655-661.
44. S.-J. Tasi, H.T. Yan, “ Determination Zirconium and molybdenum with 4,5-dihydroxybenzene-1,3-disulfonic acid disodium salt by ion-pair reversed-phase high-performance liquid chromatography ”. Analyst 118 (1993) 521.
45. S.-J. Tasi, Y.S. Lee, “ Reversed-phase high-performance liquid chromatographic separation of niobium(V) and tantalum(V) by pre-column chelation with 4-(2-pyridylazo)resorcinol ”. Analyst 116 (1991) 615~619.
46. S.-J. Tasi, S.J Hsu, “ Speciation of vanadium(V) and vanadium(IV) with4-(2-pyridylazo)resorcinol by using high-performance liquid chromatographic with spectrophotometric detection ”. Analyst 119 (1994) 403.
47. H.L. Sun, H.M. Liu, S.-J. Tasi, “ Quantitative analysis of manganese, chromium and molybdenum by ion-pair reversed-phase high- performance liquid chromatography with pre-column derivatization and UV-visible detection ”. J. Chromatogr. A 857 (1999) 351-357.
48. K. Saraswati and T. H. Rao, “ Reversed-phase high-performance liquid chromatographic separation of some trace impurities dioxygen-free electronic copper by post-column chelation with 4-(2-pyridylazo) -resorcinol and arsenazo-III ”. J. Chromatogr. 605 (1992) 63.
49. C. Baiocchi, F. Cantone, A. Marchetto, M. C. Gennaro, E. Mentasti, C. Sarzanini, “ Reversed-Phase HPLC Behaviour of Metal Complexes with 4-(2-pyridylazo)resorcinol. A Detailed Study in the Light of Solvophobic Theory ”. Chromatographia. 23 (1987) 10.
50. 分光光度分析,科學出版社,1992.
51. Y. Shi, E. M. Eyring and R. van Eldik, “ Kinetics and mechanisms of complexation of aqueous lanthanide ions by 4-(2-pyridylazo)resorcinol ”. J. Chem. Soc., Dalton Trans. (1998) 3565-3576.
52. D. Nonova and B. Evtimova “ Spectromphotometric study and analytical application of the reaction between manganese(II) and 4-(2-pyridylazo)resorcinol ”. Talanta 20 (1973) 1347.
53. P. Janos, “ Reversed-phase liquid chromatography of metal chelates of 4-(2-pyridylazo)resorcinol: retention model and its verification ”. Anal. Chim. Acta 414 (2000) 113-122.
54. C. C. Anne, N. K. Angela, Y. Liwen, A. L. Charles, “ Modification of 4-(2-pyridylazo)-resorcinol postcolumn reagent selectivity through competitive equilibria with chelating ligands ”. J. chromatogr. A 770 (1997) 69-74.
55. J. Miura, “ Determination of trace amounts of vanadium in natural waters and coal fly ash with 2-(8-quinolylazo)-5-(dimethylamino) phenol by reversed-phase liquid Chromatography spectrophotometry ”. Anal.Chem. 62 (1990) 1424.
56. R. C. Weast, “ Handbook of chemistry and physics ”, Boca Raton, Fla. :CRC Press, 1988.
57. M. A. Arain, M.Y. Khuhawar, M. I. Bhanger, “ Gas and liquid chromatography of metal chelates of pentamethylene dithiocarbamate ”. J. Chromatogr. A 973 (2002) 235-241.
58. V. Nischwitz, B. Michalke and A. Kettrup, “ Extraction and characterization of trace element species from porcine liver samples using online HPLC-ICP-MS and offline HPLC-ESI-MS ”. J. Anal. At. Spectrom 18 (2003) 444-451.
59. R. J. Harry, D. C. Cannon, J. W. Winkleman, “ Clinical Chemistry Principle and Techniques ”. Harper & Row, Hagerstown, 1974.
60. P. Vinas, M.P. Martinez and M. H. Cordoba, “ Rapid determination of selenium, lead and cadmium in body good samples using electrothermal atomic absorption spectrometry and slurry atomization ”. Anal. Chim. Acta 412 (2000) 121~130.
61. P.R.M. Correra and E. Oliveira, “ Simultaneous determination of Cd and Pb in foodstuffs by electrmthermal atomic absorption spectrometry ”. Anal. Chim. Acta 405 (2000) 205~211.
62. M. Tuzen, “ Determination of heavy metals in fish samples of the middle black Sea (Turkey) by graphite furnace atomic absorption spectrometry ”. Food Chem. 80 (2003) 119~123.
63. H.J. Wang, F. He, C.Q. Jiang, “ Spectrofluorimetric determination of trace amounts of molybdenum in pig liver and mussels ”. Anal. Chim. Acta. 126 (2001) 307~313.
64. D. A. Skoog, D. M. West, F. J. Holler,“ Foundamentals of analytical chemistry ”. Saunders College Publishing, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 洪維廷,〈發展許可衝突管理機制之探討〉,《臺灣土地金融季刊》,
2. 承立平,〈我國科技產業發展政策之作法與檢討〉,《經濟情勢暨評論季刊》,第3卷,第3期,民86.11,頁1-37。
3. 侯錦雄,〈由居民環境態度觀點探討不寧適公共設施的環境衝突--以臺中市垃圾焚化廠設置過程為例〉,《中國園藝》,第43卷,第3期,民86.9。
4. 邊泰明,〈土地開發權賦與過程中協商制度之差異經驗〉,《經社法制論叢》,第20卷,民86.7,頁217-241。
5. 詹火生,〈衝突管理與溝通技巧〉,《人力發展》,第30卷,民85.07,頁21-25。
6. 李永展,〈鄰避設施衝突管理之研究〉,《國立臺灣大學建築與城鄉研究學報》,第9期,民87.12,頁33-44。
7. 湯京平,〈鄰避性環境衝突管理的制度與策略--以理性選擇與交易成本理論分析六輕建廠及拜耳投資案〉,《政治科學論叢》,第10期,民88.6,頁355-382 。
8. 田君美,〈台灣新竹科學工業園區的發展經驗〉,《臺研兩岸前瞻探索》,第19期,民89.1,頁75-88。
9. 邱毅,〈衝突管理與溝通技巧〉,《經濟前瞻》,第61卷,民88.1,頁102-108。
10. 姚希聖,〈引入生產環境條件以探討地區,產業生產特性與發展差異     之研究〉,《公共事務評論》,第3卷,第1期,民91,頁179-209。
11. 廖坤榮、陳雅芬,〈後物質主義之地方開發政策-台南縣濱南工業區開發案探討〉,《中國行政評論》,第12卷,第4期,民92.4,頁43-76。
12. 陳銘煌,〈新竹科學工業園區之開發模式與營運績效〉,《臺灣經濟金融月刊》,第39卷,第8期,民92.8,頁42-51。
13. 譚國雄,〈土地徵收地價補償問題與衝突管理〉,《現代地政》,第266期,民92.8,頁46-52。
14. 吳泉源,〈產業研究的下一步:評瞿宛文、安士敦,<超越後進發展:臺灣的產業升級策略>〉,《臺灣社會學刊》,第32期, 民93.6,頁223-228。