|
1. Manolagas S C, Jilka R L. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332:305-311. 2. Robling A G, Castillo A B, Turner C H. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455-498. 3. Komatsu D E, Warden S J. The control of fracture healing and its therapeutic targeting: improving upon nature. J Cell Biochem.109:302-311. 4. Dimitriou R, Tsiridis E, Giannoudis P V. Current concepts of molecular aspects of bone healing. Injury. 2005;36:1392-1404. 5. Einhorn T A. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998:S7-21. 6. Holroyd C, Cooper C, Dennison E. Epidemiology of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2008;22:671-685. 7. Tow B P, Chua B S, Fook-Chong S, Howe T S. Concurrent fractures of the hip and wrist: a matched analysis of elderly patients. Injury. 2009;40:385-387. 8. Holt G, Smith R, Duncan K, Hutchison J D, Reid D. Changes in population demographics and the future incidence of hip fracture. Injury. 2009;40:722-726. 9. Sasso R C, LeHuec J C, Shaffrey C. Iliac crest bone graft donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment. J Spinal Disord Tech. 2005;18 Suppl:S77-81. 10. Rihn J A, Kirkpatrick K, Albert T J. Graft options in posterolateral and posterior interbody lumbar fusion. Spine (Phila Pa 1976).35:1629-1639. 11. Urist M R. Bone: formation by autoinduction. Science. 1965;150:893-899. 12. Rauch F, Lauzier D, Croteau S, Travers R, Glorieux F H, Hamdy R. Temporal and spatial expression of bone morphogenetic protein-2, -4, and -7 during distraction osteogenesis in rabbits. Bone. 2000;27:453-459. 13. McKay B, Sandhu H S. Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine (Phila Pa 1976). 2002;27:S66-85. 14. Suh D Y, Boden S D, Louis-Ugbo J, Mayr M, Murakami H, Kim H S, Minamide A, Hutton W C. Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate. Spine (Phila Pa 1976). 2002;27:353-360. 15. Boyne P J, Salina S, Nakamura A, Audia F, Shabahang S. Bone regeneration using rhBMP-2 induction in hemimandibulectomy type defects of elderly sub-human primates. Cell Tissue Bank. 2006;7:1-10. 16. Burkus J K, Gornet M F, Dickman C A, Zdeblick T A. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech. 2002;15:337-349. 17. Govender S, Csimma C, Genant H K, Valentin-Opran A, Amit Y, Arbel R, Aro H, Atar D, Bishay M, Borner M G, Chiron P, Choong P, Cinats J, Courtenay B, Feibel R, Geulette B, Gravel C, Haas N, Raschke M, Hammacher E, van der Velde D, Hardy P, Holt M, Josten C, Ketterl R L, Lindeque B, Lob G, Mathevon H, McCoy G, Marsh D, Miller R, Munting E, Oevre S, Nordsletten L, Patel A, Pohl A, Rennie W, Reynders P, Rommens P M, Rondia J, Rossouw W C, Daneel P J, Ruff S, Ruter A, Santavirta S, Schildhauer T A, Gekle C, Schnettler R, Segal D, Seiler H, Snowdowne R B, Stapert J, Taglang G, Verdonk R, Vogels L, Weckbach A, Wentzensen A, Wisniewski T. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84-A:2123-2134. 18. McKay W F, Peckham S M, Badura J M. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int Orthop. 2007;31:729-734. 19. Turgeman G, Zilberman Y, Zhou S, Kelly P, Moutsatsos I K, Kharode Y P, Borella L E, Bex F J, Komm B S, Bodine P V, Gazit D. Systemically administered rhBMP-2 promotes MSC activity and reverses bone and cartilage loss in osteopenic mice. J Cell Biochem. 2002;86:461-474. 20. Wu Z X, Liu D, Wan S Y, Cui G, Zhang Y, Lei W. Sustained-release rhBMP-2 increased bone mass and bone strength in an ovine model of postmenopausal osteoporosis. J Orthop Sci.16:99-104. 21. Vahle J L, Sato M, Long G G, Young J K, Francis P C, Engelhardt J A, Westmore M S, Linda Y, Nold J B. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol. 2002;30:312-321. 22. Harwood P J, Giannoudis P V. Application of bone morphogenetic proteins in orthopaedic practice: their efficacy and side effects. Expert Opin Drug Saf. 2005;4:75-89. 23. De Biase P, Capanna R. Clinical applications of BMPs. Injury. 2005;36 Suppl 3:S43-46. 24. Poynton A R, Lane J M. Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine (Phila Pa 1976). 2002;27:S40-48. 25. Garrison K R, Shemilt I, Donell S, Ryder J J, Mugford M, Harvey I, Song F, Alt V. Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev.CD006950. 26. Heldin C H, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465-471. 27. Lee K S, Kim H J, Li Q L, Chi X Z, Ueta C, Komori T, Wozney J M, Kim E G, Choi J Y, Ryoo H M, Bae S C. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 2000;20:8783-8792. 28. Lee M H, Javed A, Kim H J, Shin H I, Gutierrez S, Choi J Y, Rosen V, Stein J L, van Wijnen A J, Stein G S, Lian J B, Ryoo H M. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. J Cell Biochem. 1999;73:114-125. 29. Riley E H, Lane J M, Urist M R, Lyons K M, Lieberman J R. Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res. 1996:39-46. 30. Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson M D, Franceschi R T. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res. 2002;17:101-110. 31. Phimphilai M, Zhao Z, Boules H, Roca H, Franceschi R T. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res. 2006;21:637-646. 32. Gallea S, Lallemand F, Atfi A, Rawadi G, Ramez V, Spinella-Jaegle S, Kawai S, Faucheu C, Huet L, Baron R, Roman-Roman S. Activation of mitogen-activated protein kinase cascades is involved in regulation of bone morphogenetic protein-2-induced osteoblast differentiation in pluripotent C2C12 cells. Bone. 2001;28:491-498. 33. Lai C F, Cheng S L. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. J Biol Chem. 2002;277:15514-15522. 34. Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G, Caverzasio J. Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res. 2003;18:2060-2068. 35. Nohe A, Hassel S, Ehrlich M, Neubauer F, Sebald W, Henis Y I, Knaus P. The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem. 2002;277:5330-5338. 36. Rosen V. BMP and BMP inhibitors in bone. Ann N Y Acad Sci. 2006;1068:19-25. 37. Sapkota G, Alarcon C, Spagnoli F M, Brivanlou A H, Massague J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell. 2007;25:441-454. 38. Fuentealba L C, Eivers E, Ikeda A, Hurtado C, Kuroda H, Pera E M, De Robertis E M. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell. 2007;131:980-993. 39. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson R T, Gao Y H, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755-764. 40. Otto F, Thornell A P, Crompton T, Denzel A, Gilmour K C, Rosewell I R, Stamp G W, Beddington R S, Mundlos S, Olsen B R, Selby P B, Owen M J. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89:765-771. 41. Mundlos S, Otto F, Mundlos C, Mulliken J B, Aylsworth A S, Albright S, Lindhout D, Cole W G, Henn W, Knoll J H, Owen M J, Mertelsmann R, Zabel B U, Olsen B R. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89:773-779. 42. Hessle L, Johnson K A, Anderson H C, Narisawa S, Sali A, Goding J W, Terkeltaub R, Millan J L. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A. 2002;99:9445-9449. 43. Boskey A L, Gadaleta S, Gundberg C, Doty S B, Ducy P, Karsenty G. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone. 1998;23:187-196. 44. Bae S C, Lee Y H. Phosphorylation, acetylation and ubiquitination: the molecular basis of RUNX regulation. Gene. 2006;366:58-66. 45. Massague J, Blain S W, Lo R S. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295-309. 46. Guo X, Wang X F. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009;19:71-88. 47. Xiao G, Jiang D, Thomas P, Benson M D, Guan K, Karsenty G, Franceschi R T. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem. 2000;275:4453-4459. 48. Franceschi R T, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res. 2003;44 Suppl 1:109-116. 49. Ge C, Xiao G, Jiang D, Franceschi R T. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol. 2007;176:709-718. 50. Lee K S, Hong S H, Bae S C. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene. 2002;21:7156-7163. 51. Hu Y, Chan E, Wang S X, Li B. Activation of p38 mitogen-activated protein kinase is required for osteoblast differentiation. Endocrinology. 2003;144:2068-2074. 52. Jun J H, Yoon W J, Seo S B, Woo K M, Kim G S, Ryoo H M, Baek J H. BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J Biol Chem.285:36410-36419. 53. Tafolla E, Wang S, Wong B, Leong J, Kapila Y L. JNK1 and JNK2 oppositely regulate p53 in signaling linked to apoptosis triggered by an altered fibronectin matrix: JNK links FAK and p53. J Biol Chem. 2005;280:19992-19999. 54. Gupta S, Barrett T, Whitmarsh A J, Cavanagh J, Sluss H K, Derijard B, Davis R J. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996;15:2760-2770. 55. Davis R J. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239-252. 56. David J P, Sabapathy K, Hoffmann O, Idarraga M H, Wagner E F. JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci. 2002;115:4317-4325. 57. Liu H, Liu Y, Viggeswarapu M, Zheng Z, Titus L, Boden S D. Activation of c-Jun NH(2) -terminal kinase 1 increases cellular responsiveness to BMP-2 and decreases binding of inhibitory Smad6 to the type 1 BMP receptor. J Bone Miner Res.26:1122-1132. 58. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J. 1999;18:179-187. 59. Sanna M G, da Silva Correia J, Ducrey O, Lee J, Nomoto K, Schrantz N, Deveraux Q L, Ulevitch R J. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol Cell Biol. 2002;22:1754-1766. 60. Ortuno M J, Ruiz-Gaspa S, Rodriguez-Carballo E, Susperregui A R, Bartrons R, Rosa J L, Ventura F. p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem.285:31985-31994. 61. Sowa H, Kaji H, Yamaguchi T, Sugimoto T, Chihara K. Activations of ERK1/2 and JNK by transforming growth factor beta negatively regulate Smad3-induced alkaline phosphatase activity and mineralization in mouse osteoblastic cells. J Biol Chem. 2002;277:36024-36031. 62. Li Z, Hassan M Q, Volinia S, van Wijnen A J, Stein J L, Croce C M, Lian J B, Stein G S. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A. 2008;105:13906-13911. 63. Lien C Y, Lee O K, Su Y. Cbfb enhances the osteogenic differentiation of both human and mouse mesenchymal stem cells induced by Cbfa-1 via reducing its ubiquitination-mediated degradation. Stem Cells. 2007;25:1462-1468. 64. Ducy P, Zhang R, Geoffroy V, Ridall A L, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747-754. 65. Wee H J, Huang G, Shigesada K, Ito Y. Serine phosphorylation of RUNX2 with novel potential functions as negative regulatory mechanisms. EMBO Rep. 2002;3:967-974. 66. Jaiswal R K, Jaiswal N, Bruder S P, Mbalaviele G, Marshak D R, Pittenger M F. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem. 2000;275:9645-9652. 67. Vinals F, Lopez-Rovira T, Rosa J L, Ventura F. Inhibition of PI3K/p70 S6K and p38 MAPK cascades increases osteoblastic differentiation induced by BMP-2. FEBS Lett. 2002;510:99-104. 68. Matsuguchi T, Chiba N, Bandow K, Kakimoto K, Masuda A, Ohnishi T. JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. J Bone Miner Res. 2009;24:398-410. 69. Kretzschmar M, Doody J, Massague J. Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature. 1997;389:618-622. 70. Wrighton K H, Feng X H. To (TGF)beta or not to (TGF)beta: fine-tuning of Smad signaling via post-translational modifications. Cell Signal. 2008;20:1579-1591. 71. Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K. Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J. 2004;23:552-563. 72. Mukai T, Otsuka F, Otani H, Yamashita M, Takasugi K, Inagaki K, Yamamura M, Makino H. TNF-alpha inhibits BMP-induced osteoblast differentiation through activating SAPK/JNK signaling. Biochem Biophys Res Commun. 2007;356:1004-1010. 73. Nishimura R, Hata K, Harris S E, Ikeda F, Yoneda T. Core-binding factor alpha 1 (Cbfa1) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5. Bone. 2002;31:303-312. 74. Bravo J, Li Z, Speck N A, Warren A J. The leukemia-associated AML1 (Runx1)--CBF beta complex functions as a DNA-induced molecular clamp. Nat Struct Biol. 2001;8:371-378. 75. Ge C, Xiao G, Jiang D, Yang Q, Hatch N E, Roca H, Franceschi R T. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem. 2009;284:32533-32543. 76. Greenblatt M B, Shim J H, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park J M, Arthur S, Xie M, Schneider M D, Zhai B, Gygi S, Davis R, Glimcher L H. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest.120:2457-2473. 77. Kim B G, Kim H J, Park H J, Kim Y J, Yoon W J, Lee S J, Ryoo H M, Cho J Y. Runx2 phosphorylation induced by fibroblast growth factor-2/protein kinase C pathways. Proteomics. 2006;6:1166-1174. 78. Selvamurugan N, Pulumati M R, Tyson D R, Partridge N C. Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factor alpha1. J Biol Chem. 2000;275:5037-5042. 79. Kugimiya F, Kawaguchi H, Ohba S, Kawamura N, Hirata M, Chikuda H, Azuma Y, Woodgett J R, Nakamura K, Chung U I. GSK-3beta controls osteogenesis through regulating Runx2 activity. PLoS One. 2007;2:e837.
|