跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.42) 您好!臺灣時間:2025/10/01 11:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃怡鳳
研究生(外文):Yi-Feng Huang
論文名稱:探討c-Jun 胺基末端激酶(JNK)在骨型態發生蛋白(BMP2)誘發之成骨細胞分化過程中所扮演的角色
論文名稱(外文):The Role of c-Jun N-terminal kinase 1 (JNK1) in BMP2 induced osteoblastic differentiation
指導教授:林敬哲林敬哲引用關係洪士杰
指導教授(外文):Jing-Jer LinShih-Chieh Hung
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:79
中文關鍵詞:絲裂原活化蛋白激酶絲裂原活化蛋白激酶絲裂原活化蛋白激酶絲裂原活化蛋白激酶絲裂原活化蛋白激酶
外文關鍵詞:JNKBMP2osteoblastic differentiationMAPKRunx2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:453
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
成骨細胞是由間葉幹細胞分化而來,有多個基因參與其調控,其中以轉錄因子 Runx2 最為重要。Runx2 的表現會受到骨型態發生蛋白 (BMP2) 所調控,當BMP2 與其受體結合後,除了會活化已知的Smads 蛋白外,還會活化絲裂原活化蛋白激酶 (MAPKs) 信號通路。絲裂原活化蛋白激酶家族主要包含三個成員,其中細胞外信號調節激酶 (ERK) 與 p38 已被報導會被 BMP2所活化,並進一步提高 Runx2 的活性,然而,另一個同屬絲裂原活化蛋白激酶家族的 c-Jun 胺基末端激酶 (JNK) 在骨分化過程所扮演的角色仍未知。本研究以多能性前驅細胞株 C2C12 及骨母前驅細胞株 MC3T3-E1 為實驗模式,我們首先證明 JNK1 會因 BMP2 的刺激而被活化,並進一步以JNK 抑制劑、JNK1 基因壓抑與外送顯性抑制的突變 JNK1 (DN-JNK1) 的方式,證明干擾 JNK1 的活化能促進早期(如ALP的表現)及晚期(如礦化)分化現象。另一方面,功能獲得的 JNK1 如外送持續活化的 JNK1 (CA-JNK1) 抑制 BMP2 誘發之成骨細胞分化。此外,我們也證明JNK1 對成骨細胞分化的負調控作用需 Runx2 的存在,並進一步證明 BMP2 刺激之下活化的 JNK1 會直接對Runx2 的 Ser104 進行磷酸化修飾。外送 Ser104Ala 突變之 Runx2 不但能誘發 C2C12 及 MC3T3-E1 細胞走向成骨細胞分化,且分化程度相當於外送野生型 Runx2 並給予 JNK 抑制劑。總結上述結果,本研究證明 JNK1藉由直接對Runx2 的 Ser104 進行磷酸化修飾達到負調控 BMP2 所誘發之成骨細胞分化,對該調控機制的了解有助於發展新藥來提升成骨細胞分化及骨生成。
Runx2 plays a crucial role in osteoblastic differentiation, which can be upregulated by bone morphogenetic protein 2 (BMP2). Mitogen-activated protein kinase (MAPK) cascades, such as extracellular signal-regulated kinase (ERK) and p38, have been reported to be activated by BMP2 to increase Runx2 activity. The role of cjun-N-terminal kinase (JNK), the other member of MAPK, in osteoblastic differentiation has not been well elucidated. In this study, we first demonstrated that JNK1 is activated by BMP2 in multipotent C2C12 and preosteoblastic MC3T3-E1 cell lines. We then demonstrated that early and late osteoblastic differentiation, represented by ALP expression and mineralization, respectively, are significantly enhanced by JNK1 loss-of-function, such as treatment of JNK inhibitor, knockdown of JNK1 and ectopic expression of a dominant negative JNK1 (DN-JNK1). Consistently, BMP2-induced osteoblastic differentiation is reduced by JNK1 gain-of-function, such as enforced expression of a constitutively active JNK1 (CA-JNK1). Most importantly, we demonstrated that Runx2 is required for JNK1-mediated inhibition of osteoblastic differentiation, and identified Ser104 of Runx2 is the site phosphorylated by JNK1 upon BMP2 stimulation. Finally, we found that overexpression of the mutant Runx2 (Ser104Ala) stimulates osteoblastic differentiation of C2C12 and MC3T3-E1 cells to the extent similar to that achieved by overexpression of wild-type Runx2 plus JNK inhibitor treatment. Taken together, these data indicate that JNK1 negatively regulates BMP2-induced osteoblastic differentiation through phosphorylation of Runx2 at Ser104. In addition, unraveling these mechanisms may help to develop new strategies in enhancing osteoblastic differentiation and bone formation.
Contents
Introduction 5
-Basic bone biology
-Bone injury and treatment
-Molecular control of osteoblastic differentiation
Materials and Methods 14
-Cell culture
-Plasmid constructions
-Preparation of adenovirus
-Expression and purification of 6×His-tagged Runx2 proteins
-In vitro phosphorylation
-Metabolic labeling and immunoprecipitation of Runx2
-Alkaline phosphatase activity and mineralization assay
-Reverse transcription-polymerase chain reaction (RT-PCR) and real-time RT-PCR
-Transient transfection and luciferase assay
-Co-immunoprecipitation
-Western blotting
-RNA-mediated interference assay
-Statistical analysis
Experimental design 24
Results 25
-BMP2-induced osteoblastic differentiation is associated
with increased Runx2 expression and JNK activation
-Inhibition of JNK activity enhances BMP2-induced
osteoblastic differentiation
-JNK1 negatively regulates BMP2-induced osteoblastic
differentiation
-Inactivation of JNK1 increases Runx2 transcriptional
activity without any change in its expression level and
nuclear translocation ability
-Runx2 is required for JNK1 inhibition-induced increase in
osteoblastic differentiation
-JNK1 associates and directly phosphorylates Runx2 at Ser104
-JNK1 negatively regulates Runx2 function via
phosphorylation at Ser104
Discussion 33
Figure Legends 38
Sequence Data 62
References 68

1. Manolagas S C, Jilka R L. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332:305-311.
2. Robling A G, Castillo A B, Turner C H. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8:455-498.
3. Komatsu D E, Warden S J. The control of fracture healing and its therapeutic targeting: improving upon nature. J Cell Biochem.109:302-311.
4. Dimitriou R, Tsiridis E, Giannoudis P V. Current concepts of molecular aspects of bone healing. Injury. 2005;36:1392-1404.
5. Einhorn T A. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998:S7-21.
6. Holroyd C, Cooper C, Dennison E. Epidemiology of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2008;22:671-685.
7. Tow B P, Chua B S, Fook-Chong S, Howe T S. Concurrent fractures of the hip and wrist: a matched analysis of elderly patients. Injury. 2009;40:385-387.
8. Holt G, Smith R, Duncan K, Hutchison J D, Reid D. Changes in population demographics and the future incidence of hip fracture. Injury. 2009;40:722-726.
9. Sasso R C, LeHuec J C, Shaffrey C. Iliac crest bone graft donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment. J Spinal Disord Tech. 2005;18 Suppl:S77-81.
10. Rihn J A, Kirkpatrick K, Albert T J. Graft options in posterolateral and posterior interbody lumbar fusion. Spine (Phila Pa 1976).35:1629-1639.
11. Urist M R. Bone: formation by autoinduction. Science. 1965;150:893-899.
12. Rauch F, Lauzier D, Croteau S, Travers R, Glorieux F H, Hamdy R. Temporal and spatial expression of bone morphogenetic protein-2, -4, and -7 during distraction osteogenesis in rabbits. Bone. 2000;27:453-459.
13. McKay B, Sandhu H S. Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine (Phila Pa 1976). 2002;27:S66-85.
14. Suh D Y, Boden S D, Louis-Ugbo J, Mayr M, Murakami H, Kim H S, Minamide A, Hutton W C. Delivery of recombinant human bone morphogenetic protein-2 using a compression-resistant matrix in posterolateral spine fusion in the rabbit and in the non-human primate. Spine (Phila Pa 1976). 2002;27:353-360.
15. Boyne P J, Salina S, Nakamura A, Audia F, Shabahang S. Bone regeneration using rhBMP-2 induction in hemimandibulectomy type defects of elderly sub-human primates. Cell Tissue Bank. 2006;7:1-10.
16. Burkus J K, Gornet M F, Dickman C A, Zdeblick T A. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech. 2002;15:337-349.
17. Govender S, Csimma C, Genant H K, Valentin-Opran A, Amit Y, Arbel R, Aro H, Atar D, Bishay M, Borner M G, Chiron P, Choong P, Cinats J, Courtenay B, Feibel R, Geulette B, Gravel C, Haas N, Raschke M, Hammacher E, van der Velde D, Hardy P, Holt M, Josten C, Ketterl R L, Lindeque B, Lob G, Mathevon H, McCoy G, Marsh D, Miller R, Munting E, Oevre S, Nordsletten L, Patel A, Pohl A, Rennie W, Reynders P, Rommens P M, Rondia J, Rossouw W C, Daneel P J, Ruff S, Ruter A, Santavirta S, Schildhauer T A, Gekle C, Schnettler R, Segal D, Seiler H, Snowdowne R B, Stapert J, Taglang G, Verdonk R, Vogels L, Weckbach A, Wentzensen A, Wisniewski T. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84-A:2123-2134.
18. McKay W F, Peckham S M, Badura J M. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int Orthop. 2007;31:729-734.
19. Turgeman G, Zilberman Y, Zhou S, Kelly P, Moutsatsos I K, Kharode Y P, Borella L E, Bex F J, Komm B S, Bodine P V, Gazit D. Systemically administered rhBMP-2 promotes MSC activity and reverses bone and cartilage loss in osteopenic mice. J Cell Biochem. 2002;86:461-474.
20. Wu Z X, Liu D, Wan S Y, Cui G, Zhang Y, Lei W. Sustained-release rhBMP-2 increased bone mass and bone strength in an ovine model of postmenopausal osteoporosis. J Orthop Sci.16:99-104.
21. Vahle J L, Sato M, Long G G, Young J K, Francis P C, Engelhardt J A, Westmore M S, Linda Y, Nold J B. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol. 2002;30:312-321.
22. Harwood P J, Giannoudis P V. Application of bone morphogenetic proteins in orthopaedic practice: their efficacy and side effects. Expert Opin Drug Saf. 2005;4:75-89.
23. De Biase P, Capanna R. Clinical applications of BMPs. Injury. 2005;36 Suppl 3:S43-46.
24. Poynton A R, Lane J M. Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine (Phila Pa 1976). 2002;27:S40-48.
25. Garrison K R, Shemilt I, Donell S, Ryder J J, Mugford M, Harvey I, Song F, Alt V. Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev.CD006950.
26. Heldin C H, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390:465-471.
27. Lee K S, Kim H J, Li Q L, Chi X Z, Ueta C, Komori T, Wozney J M, Kim E G, Choi J Y, Ryoo H M, Bae S C. Runx2 is a common target of transforming growth factor beta1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 2000;20:8783-8792.
28. Lee M H, Javed A, Kim H J, Shin H I, Gutierrez S, Choi J Y, Rosen V, Stein J L, van Wijnen A J, Stein G S, Lian J B, Ryoo H M. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor beta1 in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. J Cell Biochem. 1999;73:114-125.
29. Riley E H, Lane J M, Urist M R, Lyons K M, Lieberman J R. Bone morphogenetic protein-2: biology and applications. Clin Orthop Relat Res. 1996:39-46.
30. Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson M D, Franceschi R T. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Miner Res. 2002;17:101-110.
31. Phimphilai M, Zhao Z, Boules H, Roca H, Franceschi R T. BMP signaling is required for RUNX2-dependent induction of the osteoblast phenotype. J Bone Miner Res. 2006;21:637-646.
32. Gallea S, Lallemand F, Atfi A, Rawadi G, Ramez V, Spinella-Jaegle S, Kawai S, Faucheu C, Huet L, Baron R, Roman-Roman S. Activation of mitogen-activated protein kinase cascades is involved in regulation of bone morphogenetic protein-2-induced osteoblast differentiation in pluripotent C2C12 cells. Bone. 2001;28:491-498.
33. Lai C F, Cheng S L. Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. J Biol Chem. 2002;277:15514-15522.
34. Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G, Caverzasio J. Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res. 2003;18:2060-2068.
35. Nohe A, Hassel S, Ehrlich M, Neubauer F, Sebald W, Henis Y I, Knaus P. The mode of bone morphogenetic protein (BMP) receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem. 2002;277:5330-5338.
36. Rosen V. BMP and BMP inhibitors in bone. Ann N Y Acad Sci. 2006;1068:19-25.
37. Sapkota G, Alarcon C, Spagnoli F M, Brivanlou A H, Massague J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol Cell. 2007;25:441-454.
38. Fuentealba L C, Eivers E, Ikeda A, Hurtado C, Kuroda H, Pera E M, De Robertis E M. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell. 2007;131:980-993.
39. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson R T, Gao Y H, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755-764.
40. Otto F, Thornell A P, Crompton T, Denzel A, Gilmour K C, Rosewell I R, Stamp G W, Beddington R S, Mundlos S, Olsen B R, Selby P B, Owen M J. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89:765-771.
41. Mundlos S, Otto F, Mundlos C, Mulliken J B, Aylsworth A S, Albright S, Lindhout D, Cole W G, Henn W, Knoll J H, Owen M J, Mertelsmann R, Zabel B U, Olsen B R. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89:773-779.
42. Hessle L, Johnson K A, Anderson H C, Narisawa S, Sali A, Goding J W, Terkeltaub R, Millan J L. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A. 2002;99:9445-9449.
43. Boskey A L, Gadaleta S, Gundberg C, Doty S B, Ducy P, Karsenty G. Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone. 1998;23:187-196.
44. Bae S C, Lee Y H. Phosphorylation, acetylation and ubiquitination: the molecular basis of RUNX regulation. Gene. 2006;366:58-66.
45. Massague J, Blain S W, Lo R S. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103:295-309.
46. Guo X, Wang X F. Signaling cross-talk between TGF-beta/BMP and other pathways. Cell Res. 2009;19:71-88.
47. Xiao G, Jiang D, Thomas P, Benson M D, Guan K, Karsenty G, Franceschi R T. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem. 2000;275:4453-4459.
48. Franceschi R T, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res. 2003;44 Suppl 1:109-116.
49. Ge C, Xiao G, Jiang D, Franceschi R T. Critical role of the extracellular signal-regulated kinase-MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol. 2007;176:709-718.
50. Lee K S, Hong S H, Bae S C. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene. 2002;21:7156-7163.
51. Hu Y, Chan E, Wang S X, Li B. Activation of p38 mitogen-activated protein kinase is required for osteoblast differentiation. Endocrinology. 2003;144:2068-2074.
52. Jun J H, Yoon W J, Seo S B, Woo K M, Kim G S, Ryoo H M, Baek J H. BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J Biol Chem.285:36410-36419.
53. Tafolla E, Wang S, Wong B, Leong J, Kapila Y L. JNK1 and JNK2 oppositely regulate p53 in signaling linked to apoptosis triggered by an altered fibronectin matrix: JNK links FAK and p53. J Biol Chem. 2005;280:19992-19999.
54. Gupta S, Barrett T, Whitmarsh A J, Cavanagh J, Sluss H K, Derijard B, Davis R J. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996;15:2760-2770.
55. Davis R J. Signal transduction by the JNK group of MAP kinases. Cell. 2000;103:239-252.
56. David J P, Sabapathy K, Hoffmann O, Idarraga M H, Wagner E F. JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J Cell Sci. 2002;115:4317-4325.
57. Liu H, Liu Y, Viggeswarapu M, Zheng Z, Titus L, Boden S D. Activation of c-Jun NH(2) -terminal kinase 1 increases cellular responsiveness to BMP-2 and decreases binding of inhibitory Smad6 to the type 1 BMP receptor. J Bone Miner Res.26:1122-1132.
58. Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J. 1999;18:179-187.
59. Sanna M G, da Silva Correia J, Ducrey O, Lee J, Nomoto K, Schrantz N, Deveraux Q L, Ulevitch R J. IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol Cell Biol. 2002;22:1754-1766.
60. Ortuno M J, Ruiz-Gaspa S, Rodriguez-Carballo E, Susperregui A R, Bartrons R, Rosa J L, Ventura F. p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem.285:31985-31994.
61. Sowa H, Kaji H, Yamaguchi T, Sugimoto T, Chihara K. Activations of ERK1/2 and JNK by transforming growth factor beta negatively regulate Smad3-induced alkaline phosphatase activity and mineralization in mouse osteoblastic cells. J Biol Chem. 2002;277:36024-36031.
62. Li Z, Hassan M Q, Volinia S, van Wijnen A J, Stein J L, Croce C M, Lian J B, Stein G S. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A. 2008;105:13906-13911.
63. Lien C Y, Lee O K, Su Y. Cbfb enhances the osteogenic differentiation of both human and mouse mesenchymal stem cells induced by Cbfa-1 via reducing its ubiquitination-mediated degradation. Stem Cells. 2007;25:1462-1468.
64. Ducy P, Zhang R, Geoffroy V, Ridall A L, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89:747-754.
65. Wee H J, Huang G, Shigesada K, Ito Y. Serine phosphorylation of RUNX2 with novel potential functions as negative regulatory mechanisms. EMBO Rep. 2002;3:967-974.
66. Jaiswal R K, Jaiswal N, Bruder S P, Mbalaviele G, Marshak D R, Pittenger M F. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem. 2000;275:9645-9652.
67. Vinals F, Lopez-Rovira T, Rosa J L, Ventura F. Inhibition of PI3K/p70 S6K and p38 MAPK cascades increases osteoblastic differentiation induced by BMP-2. FEBS Lett. 2002;510:99-104.
68. Matsuguchi T, Chiba N, Bandow K, Kakimoto K, Masuda A, Ohnishi T. JNK activity is essential for Atf4 expression and late-stage osteoblast differentiation. J Bone Miner Res. 2009;24:398-410.
69. Kretzschmar M, Doody J, Massague J. Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature. 1997;389:618-622.
70. Wrighton K H, Feng X H. To (TGF)beta or not to (TGF)beta: fine-tuning of Smad signaling via post-translational modifications. Cell Signal. 2008;20:1579-1591.
71. Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K. Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J. 2004;23:552-563.
72. Mukai T, Otsuka F, Otani H, Yamashita M, Takasugi K, Inagaki K, Yamamura M, Makino H. TNF-alpha inhibits BMP-induced osteoblast differentiation through activating SAPK/JNK signaling. Biochem Biophys Res Commun. 2007;356:1004-1010.
73. Nishimura R, Hata K, Harris S E, Ikeda F, Yoneda T. Core-binding factor alpha 1 (Cbfa1) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5. Bone. 2002;31:303-312.
74. Bravo J, Li Z, Speck N A, Warren A J. The leukemia-associated AML1 (Runx1)--CBF beta complex functions as a DNA-induced molecular clamp. Nat Struct Biol. 2001;8:371-378.
75. Ge C, Xiao G, Jiang D, Yang Q, Hatch N E, Roca H, Franceschi R T. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor. J Biol Chem. 2009;284:32533-32543.
76. Greenblatt M B, Shim J H, Zou W, Sitara D, Schweitzer M, Hu D, Lotinun S, Sano Y, Baron R, Park J M, Arthur S, Xie M, Schneider M D, Zhai B, Gygi S, Davis R, Glimcher L H. The p38 MAPK pathway is essential for skeletogenesis and bone homeostasis in mice. J Clin Invest.120:2457-2473.
77. Kim B G, Kim H J, Park H J, Kim Y J, Yoon W J, Lee S J, Ryoo H M, Cho J Y. Runx2 phosphorylation induced by fibroblast growth factor-2/protein kinase C pathways. Proteomics. 2006;6:1166-1174.
78. Selvamurugan N, Pulumati M R, Tyson D R, Partridge N C. Parathyroid hormone regulation of the rat collagenase-3 promoter by protein kinase A-dependent transactivation of core binding factor alpha1. J Biol Chem. 2000;275:5037-5042.
79. Kugimiya F, Kawaguchi H, Ohba S, Kawamura N, Hirata M, Chikuda H, Azuma Y, Woodgett J R, Nakamura K, Chung U I. GSK-3beta controls osteogenesis through regulating Runx2 activity. PLoS One. 2007;2:e837.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top