|
1. V. A. Cherepenin, A. Y. Karpov, A. V. Korjenevsky, V. N. Kornienko, Y. S. Kultiasov, M. B. Ochapkin, O. V. Trochanova, and J. D. Meister, “Three-dimensional EIT imaging of breast tissues : system design and clinical testing” IEEE Transactions on Medical Imaging, vol. 21, no. 6, pp. 662-667, 2002. 2. J. H. Li, C. Joppek, and U. Faust, “Fast EIT data acquisition system with active electrodes and its application to cardiac imaging” Physiological Measurement, vol. 17, no. 4A, p. A25, 1996. 3. R. H. Smallwood, A. R. Hampshire, B. H. Brown, R. A. Primhak, S. Marven, and P. Nopp, “A comparison of neonatal and adult lung impedances derived from EIT images” Physiological Measurement, vol. 20, no. 4, p. 401, 1999. 4. R. A. Erol, R. H. Smallwood, B. H. Brown, P. Cherian, and K. D. Bardhan, “Detecting oesophageal-related changes using electrical impedance tomography” Physiological Measurement, vol. 16, no. 3A, p. A143, 1995. 5. I. Jurgens, rgens, J. Rosell, and P. J. Riu, “Electrical impedance tomography of the eye: in vitro measurements of the cornea and the lens” Physiological Measurement, vol. 17, no. 4A, p. A187, 1996. 6. A. T. Tidswell, A. Gibson, R. H. Bayford, and D. S. Holder, “Electrical impedance tomography of human brain activity with a two- dimensional ring of scalp electrodes” Physiological Measurement, vol. 22, no. 1, p. 167, 2001. 7. Z. Szczepanik, and Z. Rucki, “Frequency analysis of electrical impedance tomography system”, IEEE Transactions on Instrumentation and Measurement, vol. 49, no. 4, pp. 844-851, 2000. 8. A.P. Calderon, “On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to continuum physics” Brasileira de Matematica, R?o de Janeiro, pp. 65-73, 1980. 9. J. Sylvester, and G. Uhlmann, “A global uniqueness theorem for an inverse boundary value problem” Annals of Mathematics, vol. 125, pp. 153-169, 1987. 10. A.I. Nachman, “Reconstructions from boundary measurements” Annals of Mathematics, vol. 128, no. 3, pp. 531-576, 1988. 11. A.I. Nachman, “Global uniqueness for a two-dimensional inverse boundary problem” Annals of Mathematics, vol. 143, no. 1, pp. 71-96, 1996. 12. R.M. Brown, and G.A. Uhlmann, “Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions” Communications in Partial Differential Equations, vol. 22, pp. 1009-1027, 1997. 13. Y Kim, J.G. Webster, and W.J. Tompkins, “Electrical impedance imaging of the thorax” J Microwave Power, Vol. 18, No. 3, pp. 245-257, 1983. 14. A. Wexler, B. fry, and M.R. Neuman, “Impedance-computed tomography algorithm and system” Applied Optics, Vol. 24, No. 23, pp. 3985-3992, 1985. 15. T. Murai, and Y. Kagawa, “Electrical impedance computed tomography based on a finite element model” IEEE Transactions on Biomedical Engineering, vol. 32, no. 3, pp. 177-184, 1985. 16. D.C. Barber, and A.D. Seagar, “Fast reconstruction of resistive images” Clinical Physics and Physiological Measurement, vol. 8, pp. 47-54, 1987. 17. T.J. Yorkey, J.G. Webster, and W.J. Tompkins, “Comparing Reconstruction Algorithms for Electrical Impedance Tomography” IEEE Transactions on Biomedical Engineering, vol. 34, no. 11, pp. 843-852, 1987. 18. M. Zadehkoochak, T.K. Hames, B.H. Blott, and R. F. George, “A transputer implemented algorithm for electrical impedance tomography” Clinical Physics and Physiological Measurement, vol. 11, no. 3, pp. 223-230, 1990. 19. A. Adler, and R. Guardo, “A neural network image reconstruction technique for electrical impedance tomography” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 594-600, 1994. 20. S. Meeson, A.L.T. Killingback, and B.H. Blott, “The dependence of EIT images on the assumed initial conductivity distribution: a study of pelvic imaging” Physics in Medicine and Biology, vol. 40, no. 5, pp. 643-657, 1995. 21. 王 超、王 化祥,「基於閾值的廣義逆電阻抗成像的重建算法」 自然科學進展, vol. 12, no. 11, pp. 1193-1196, 2001. 22. M. Wang, “Inverse solutions for electrical impedance tomography based on conjugate gradients method” Measurement science & technology, vol. 13, pp. 101-117, 2002. 23. C.S. Liu, “Cone of non-linear dynamical system and group preserving schemes” International Journal of Non-Linear Mechanics, vol. 36, pp. 1047-1068, 2001. 24. C.S. Liu, “One-step GPS for the estimation of temperature-dependent thermal conductivity” International Journal of Heat and Mass Transfer, vol. 49, pp. 3084-3093, 2006. 25. C.W. Chang, C.S. Liu, and J.R. Chang, “A group preserving scheme for inverse heat conduction problems” Computer Modeling in Engineering & Sciences, vol. 10, pp. 13-38, 2005. 26. C.S. Liu, L.W. Liu, and H.K. Hong, “Highly accurate computation of spatial-dependent heat capacity in inverse thermal problem” Computer Modeling in Engineering & Sciences, vol. 17, pp. 1-18, 2007 27. C.S. Liu, “An efficient simultaneous estimation of temperature- dependent thermophysical properties” Computer Modeling in Engineering and Sciences, vol. 14, pp. 77-90, 2006. 28. C.S. Liu, “Identification of temperature-dependent thermophysical properties in a partial differential equation subject to extra final measurement data” Numerical Methods for Partial Differential Equations, vol. 23, pp. 1083-1109, 2007. 29. C.S. Liu, L.W. Liu, and H.K. Hong, “Highly accurate computation of spatial-dependent heat conductivity and heat capacity in inverse thermal problem” Computer Modeling in Engineering and Sciences, vol. 17, pp. 1-18, 2007. 30. C.S. Liu, “The Lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solution” Computer Modeling in Engineering & Sciences, vol. 13, pp. 149-163, 2006. 31. J.R. Chang, C.S. Liu, and C.W. Chang, “A new shooting method for quasi-boundary regularization of backward heat conduction problems” International Journal of Heat and Mass Transfer, vol. 50, pp. 2325-2332, 2006. 32. I.M. Gel’fand, and B.M. Levitan, “On the determination of a differential equation from its spectral function” American Mathematical Society Translations, vol. 1, pp. 253-304, 1955. 33. J.R. McLaughlin, “Analytical methods for recovering coefficients in differential equations from spectral data” SIAM Review, vol. 28, no. 1, pp. 53-72, 1986. 34. D. Boley, and G.H. Golub, “A survey of matrix inverse eigenvalue problem” Inverse Problems, vol. 3, no. 4, pp. 595-622, 1987. 35. C.S. Liu, “Solving an inverse Sturm-Liouville problem by a Lie-group method” Boundary Value Problems, vol. 2008, Article ID 749865, 18 pages, 2008 36. C.S. Liu, “Nonstandard Group-preserving Schemes for Very Stiff Ordinary Differential Equation” Computer Modeling in Engineering & Sciences, vol. 09, pp. 255-272, 2005. 37. Y.L. Keung, and J. Zou, “An efficient linear solver for nonlinear parameter identification problems” SIAM Journal on Scientific Computing, vol. 22, no. 5, pp. 1511-1526, 2000.
|