跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/10/10 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭星君
研究生(外文):Hsing-Chun
論文名稱:咖啡酸苯乙酯抗癌活性之研究
論文名稱(外文):Studies on the antitumor effects and mechanisms of caffeic acid phenethyl ester
指導教授:曾翠華曾翠華引用關係
指導教授(外文):Tsui-Hwa Tseng
學位類別:博士
校院名稱:中山醫學大學
系所名稱:生化暨生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:142
相關次數:
  • 被引用被引用:0
  • 點閱點閱:455
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
第一部份 咖啡酸苯乙酯抑制神經膠質瘤體外與體內之增生及誘發分化之研究
Caffeic acid phenethyl ester (CAPE)是多酚抗氧化化合物,是蜂膠主要成分之一;過去文獻指出其具有抗發炎、抗氧化、抗病毒、抗腫瘤等作用。由先前的實驗,發現 CAPE誘導的訊息傳導機制 p38 MAPK (p38 mitogen-activated protein kinase),啟動可能由 p53-Bax途徑介導,誘發凋謝死亡;所以,在本實驗中我們針對 C6神經膠質瘤進一步探討其對抑制細胞增生之作用機轉。當處理 CAPE不同劑量與歷經不同的時間,藉此觀測細胞的增生動態,我們發現 CAPE能有效的壓抑惡性腫瘤 C6的增殖;除此,透過流式細胞儀分析細胞週期, CAPE(50μM)處理24小時,發現 85 ﹪的細胞停滯在G0/G1期;利用西方墨點法分析相關細胞週期蛋白,處理6小時後發現, Rb phosphorylation蛋白表現減少,且 CDKIs 蛋白 p16、 p21、 p27表現大增;而 cyclin D1與 cyclin E的交互作用遞減,顯示 CDK2活性的確受到影響,因此 CAPE呈現良好的抑制現象。另外,在裸鼠皮下接種 C6神經膠質瘤細胞,測試 CAPE是否影響在皮下之急性生長;給予腹腔注射 CAPE (1-10 mg/kg)能有效抑制轉殖裸鼠腫瘤之生長,摘除局部腫瘤組織,切片利用免疫化學染色觀察,細胞增殖的情形,結果發現, CAPE 刺激下,能抑制皮下癌化細胞的分裂與 PCNA蛋白質的表達。據文獻指出,誘發細胞週期停滯與特異的蛋白表現是分化之現象,所以我們以 CAPE為藥劑來探索是否造成神經膠質瘤 C6細胞分化。結果顯示,在低劑量 CAPE (10 μM)處理下,能有效誘導 C6細胞分化標的蛋白 GFAP表達,細胞型態呈現紡綞體而不見延伸能力。並發現 PKC/ERK訊息傳導激酶活化,在 CAPE刺激 C6細胞的分化過程裡,可能扮演重要的調控角色。經由以上結果得知, CAPE的抗癌活性作用,在較高的劑量能抑制神經膠質瘤細胞的增生,而且較低的劑量能誘發癌化 C6細胞分化。
第二部份 咖啡酸苯乙酯促進維他命A酸誘發人類血癌細胞分化之研究
急性前骨髓性白血病 (APL)是由於這些骨髓母細胞異常停滯在不同分化階段,白血球不能正常分化,進而造成不成熟的細胞大量累積成為病灶。目前,治療血癌病患的化學治療以維他命A酸 (ATRA)為主;不過美中不足的是, ATRA可能會引起白血球過高及快速發展的耐藥性,致使治療遇上瓶頸,而無法維持病患長期的緩解。而替代方法是尋求另類藥劑,或是以天然物作為複合配方,以加強治療效用。 Caffeic acid phenethyl ester (CAPE)是蜂膠活性成分之一;過去,我們已經證實,刺激癌化細胞凋亡與抑制增生的機制。根據之前文獻,誘發細胞週期停滯與特異的蛋白表現是分化現象,所以我們以 CAPE為藥劑來探索是否造成血癌 HL-60細胞分化,或是與 ATRA作為複合配方研究分化的分子機制。經由實驗結果發現,利用化學染劑 (Wright-Giemsa stain) 觀察型態, CAPE也會促進低劑量 ATRA (1nM)分化的效用,而此種分化經由 NBT reduction,和透過流式細胞儀分析分化標的膜蛋白 CD11b/CD14及細胞週期測試後,證實細胞週期停滯 G1 phase與分化現象的機制有關;再藉由免疫沉降法測試,更證實細胞週期停滯將影響 CDK2的活性。血癌 HL-60細胞分化與細胞核 RARa蛋白受體訊息路徑,促進相關基因的轉錄活性有關。另外,我們也利用 EMSA分析 RARa蛋白受體與 RARE DR5的親合力,發現低劑量 ATRA誘導 RARa轉錄活化會隨 CAPE的劑量增高而加強,直接促進 ATRA相關基因 RARa、C/EBPe與 p21的表達,進而誘導血癌細胞分化的進行;此外, RARa蛋白受 CAPE的處理而活性增加,這樣的現象似乎是 MEK-ERK活絡訊息傳導路徑有關。在以上實驗結果得知, CAPE不僅會誘導分化,也會促進分化的進行,充分了解分化現象的機制,與細胞核蛋白雙受體訊息路徑的角色。這個研究將在抗血癌的化學預防領域有所突破。
Part-1
The mechanistic study of caffeic acid phenethyl ester induced C6 glioma growth inhibition and differentiation in vitro and in vivo
Caffeic acid phenethyl ester (CAPE), a component of honeybee propolis, has been reported to hold various biochemical responses. More recently, work on the anti-inflammatory, anti-bacteria, anti-fungus, anti-virus and anti-tumor activity of propolis has concentrated on caffeic acid phenethyl ester(CAPE), which is one of components. As our previous studies, we had found CAPE induced apoptosis of C6 glioma cells and was mediated via signaling pathway of p38 MAPK. In the present study, we found that CAPE inhibited the growth of C6 cells in a dose dependent and time dependent manner as shown by the results of trypan blue dye exclusion assay and cell proliferation assay. In addition, the cell number percentage of the G0/G1 phase increased to 85% after the treatment with 50 μM of CAPE for 24h. After treatment with CAPE (50 μM) for 6 h, it demonstrated that the protein level of hyperphosphorylated pRb decreased, and cyclin dependent kinase inhibitors p21, p27, and p16 were marked up-regulated. The association of CDK2 and cyclin E that affects the CDK2 activity decreased. When C6 cells were grown as xenografts in nude mice, treatment with CAPE (1-10mg/kg; ip) induced a significant dose dependent decrease in tumor growth by evaluating tumor volume and tumor weight. Histochemical and immunohistochemical analysis revealed that CAPE treatment significantly reduced the number of mitotic cells and proliferating cell nuclear antigen (PCNA)-positive cells in C6 glioma. We further evaluated the effects of CAPE (10 μM) on the expression of GFAP and PKC isoenzymes in C6 glioma cells. Our results demonstrated that the ability of CAPE to promote activation of PKC/ERK is thought to be a key event in controlling the astrocytic differentiation of C6 glioma cells. These results suggest that CAPE presents an antitumor potential for glioma by inhibiting the growth of tumor cells and triggering astrocytic differentiation.
Part 2-The role of caffeic acid phenethyl ester enhanced all–trans retinoic acid induced differentiation in human leukemia HL-60 cells
Acute promyeloid leukemia (APL) is characterized by the accumulation of myeloid blast cells that are arrested at various differentiation stages and unable to terminally differentiate. All-trans retinoic acid (ATRA) induces complete remission in a high proportion of patients with acute promyelocytic leukemia (ALP), however, the response is sometimes very slow. Furthermore, relapse and resistance to treatment often occur despite continued treatment with ATRA. Thereafter, combination treatment strategies have been suggested to circumvent these problems. Our previous studies showed that CAPE apparently affect carcinoma cells of by stimulating cellular apoptosis and anti-proliferative effect both in vitro and in vivo. The present study demonstrates that caffeic acid phenethyl ester (CAPE), a major component of honeybee propolis, enhanced ATRA-induced granulocytic differentiation in HL-60, a human promyelocytic cell line. The differentiation was assessed by Wright-Giemsa stain, nitroblue tetrazolium reduction, and membrane differentiation marker CD11b. In addition, CAPE enhanced ATRA-induced cell cycle arrest at the G1 phase by decreasing the association of CDK2-cyclin E complex. Finally, it was demonstrated that CAPE promoted the ATRA-mediated nuclear receptors such as RARa binding to the DNA response element and enhanced the expression of target genes including RARa, C/EBPe, and p21 protein resulting in the development of leukemia. CAPE alone elicited the expression of RARα, but a marked up regulation in presence of ATRA, which appeared to be modulating MEK-ERK signal pathway. Taken above together, it is suggested that CAPE provides novel drug targets of the potential to enhance the efficiency of ATRA in the induction differentiation of promyelocytic leukemia.
目 錄
目錄-------------------------------------------------------------------------------------------------2
第一部份 咖啡酸苯乙酯抑制神經膠質瘤體外與體內之增生及誘發分化之研究
The mechanistic study of caffeic acid phenethyl ester induced C6 glioma growth inhibition and differentiation in vitro and in vivo
縮寫表----------------------------------------------------------------------------------------------5
中文摘要 -----------------------------------------------------------------------------------------6
英文摘要 -----------------------------------------------------------------------------------------7
第一章 緒論 -------------------------------------------------------------------------------------8
第一節 背景介紹 --------------------------------------------------------------------------8
第二節 藥物介紹 ------------------------------------------------------------------------11
第三節 細胞週期調控與細胞增殖------------------------------------------------------14
第四節 神經膠質瘤細胞分化模式------------------------------------------------------18
第二章 研究目的 ------------------------------------------------------------------------------22
第三章 實驗材料與方法 ---------------------------------------------------------------------23
第一節 實驗材料 --------------------------------------------------------------------------23
第二節 實驗方法 --------------------------------------------------------------------------26
第四章 結果 ------------------------------------------------------------------------------------36
第一節 咖啡酸苯乙酯抑制 C6 神經膠質瘤細胞增生之作用---------------------36
第二節 咖啡酸苯乙酯抑制體內移植裸鼠腫瘤細胞增殖之效果-------------------39
第三節 咖啡酸苯乙酯啟動神經膠質瘤細胞分化之作用----------------------------42
第四節 咖啡酸苯乙酯刺激 PKC/ERK訊息傳導激酶活化之影響---------------44
第五章 討論 -----------------------------------------------------------------------------------46
第一節 咖啡酸苯乙酯抑制 C6 神經膠質瘤細胞增生------------------------------46
第二節 咖啡酸苯乙酯啟動神經膠質瘤細胞分化之作用---------------------------48
第六章 參考文獻--------------------------------------------------------------------------------51
第七章 圖表與說明-----------------------------------------------------------------------------62
第八章 附圖--------------------------------------------------------------------------------------81

第二部份 咖啡酸苯乙酯促進維他命A酸誘發人類血癌細胞分化之研究
The role of caffeic acid phenethyl ester enhanced all–trans retinoic acid
induced differentiation in human leukemia HL-60 cells
縮寫表----------------------------------------------------------------------------------------------86
中文摘要 -----------------------------------------------------------------------------------------87
英文摘要 -----------------------------------------------------------------------------------------88
第一章 緒論 -------------------------------------------------------------------------------------89
第一節 背景介紹 ----------------------------------------------------------------------89
第二節 藥物介紹 ----------------------------------------------------------------------90
第三節 血癌細胞分化理論-----------------------------------------------------------93
第四節 細胞核蛋白雙受體訊息路徑-----------------------------------------------96
第二章 研究目的 -------------------------------------------------------------------------------98
第三章 實驗材料與方法 ---------------------------------------------------------------------99
第一節 實驗材料 ----------------------------------------------------------------------99
第二節 實驗方法 ----------------------------------------------------------------------101
第四章 結果 -------------------------------------------------------------------------------------109
第一節 CAPE與低劑量 ATRA或作為複合配方處理對 HL-60
與 U-937細胞在體外實驗中所引起的生長抑制之作用------------------109
第二節 CAPE與低劑量ATRA作為複合配方處理促進誘導分化的現象------110
第三節 探討 CAPE與 ATRA作為複合配方處理所引起血癌細胞
分化過程,細胞生長與細胞週期的關係。----------------------------------111
第四節 探討 CAPE與低劑量 ATRA作為複合配方處理,血癌
細胞分化過程,細胞核蛋白雙受體訊息路徑-------------------------------112
第五節 探討 CAPE處理下所引起血癌細胞分化過程,促進其
ATRA下游基因的表達之影響-------------------------------------------------113
第六節 CAPE或與 ATRA作為複合配方處理,探討血癌細胞分化過程
,細胞核蛋白雙受體 RARα表達之影響------------------------------------114
第五章 討論 -----------------------------------------------------------------------------------116
第六章 參考文獻--------------------------------------------------------------------------------120
第七章 圖表與說明-----------------------------------------------------------------------------128
第八章 附圖--------------------------------------------------------------------------------------140
研究論文附件------------------------------------------------------------------------------------142
1.Chambers AF, Groom AC and MacDonald IC, Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8): 563-72, 2002.
2.Deryugina EI and Quigley JP, Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25(1): 9-34, 2006.
3.Overall CM and Lopez-Otin C, Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2(9): 657-72, 2002.
4.Rao JS, Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3(7): 489-501, 2003.
5.Evan GI and Vousden KH, Proliferation, cell cycle and apoptosis in cancer. Nature 411(6835): 342-8, 2001.
6.Bansal K, Liang ML and Rutka JT, Molecular biology of human gliomas. Technol Cancer Res Treat 5(3): 185-94, 2006.
7.Benda P, Lightbody J, Sato G, Levine L and Sweet W, Differentiated rat glial cell strain in tissue culture. Science 161(839): 370-1, 1968.
8.Burdock GA, Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36(4): 347-63, 1998.
9.Castaldo S and Capasso F, Propolis, an old remedy used in modern medicine. Fitoterapia 73 Suppl 1: S1-6, 2002.
10.Bankova V, Christov R, Kujumgiev A, Marcucci MC and Popov S, Chemical composition and antibacterial activity of Brazilian propolis. Z Naturforsch [C] 50(3-4): 167-72, 1995.
11.Park YK, Alencar SM and Aguiar CL, Botanical origin and chemical composition of Brazilian propolis. J Agric Food Chem 50(9): 2502-6, 2002.
12.Yao L, Jiang Y, D''Arcy B, Singanusong R, Datta N, Caffin N and Raymont K, Quantitative high-performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys. J Agric Food Chem 52(2): 210-4, 2004.
13.de Castro SL and Higashi KO, Effect of different formulations of propolis on mice infected with Trypanosoma cruzi. J Ethnopharmacol 46(1): 55-8, 1995.
14.Dobrowolski JW, Vohora SB, Sharma K, Shah SA, Naqvi SA and Dandiya PC, Antibacterial, antifungal, antiamoebic, antiinflammatory and antipyretic studies on propolis bee products. J Ethnopharmacol 35(1): 77-82, 1991.
15.Frenkel K, Wei H, Bhimani R, Ye J, Zadunaisky JA, Huang MT, Ferraro T, Conney AH and Grunberger D, Inhibition of tumor promoter-mediated processes in mouse skin and bovine lens by caffeic acid phenethyl ester. Cancer Res 53(6): 1255-61, 1993.
16.Grunberger D, Banerjee R, Eisinger K, Oltz EM, Efros L, Caldwell M, Estevez V and Nakanishi K, Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia 44(3): 230-2, 1988.
17.Chiao C, Carothers AM, Grunberger D, Solomon G, Preston GA and Barrett JC, Apoptosis and altered redox state induced by caffeic acid phenethyl ester (CAPE) in transformed rat fibroblast cells. Cancer Res 55(16): 3576-83, 1995.
18.Fitzpatrick LR, Wang J and Le T, Caffeic acid phenethyl ester, an inhibitor of nuclear factor-kappaB, attenuates bacterial peptidoglycan polysaccharide-induced colitis in rats. J Pharmacol Exp Ther 299(3): 915-20, 2001.
19.Song YS, Park EH, Hur GM, Ryu YS, Lee YS, Lee JY, Kim YM and Jin C, Caffeic acid phenethyl ester inhibits nitric oxide synthase gene expression and enzyme activity. Cancer Lett 175(1): 53-61, 2002.
20.Lee YJ, Kuo HC, Chu CY, Wang CJ, Lin WC and Tseng TH, Involvement of tumor suppressor protein p53 and p38 MAPK in caffeic acid phenethyl ester-induced apoptosis of C6 glioma cells. Biochem Pharmacol 66(12): 2281-9, 2003.
21.Watabe M, Hishikawa K, Takayanagi A, Shimizu N and Nakaki T, Caffeic acid phenethyl ester induces apoptosis by inhibition of NFkappaB and activation of Fas in human breast cancer MCF-7 cells. J Biol Chem 279(7): 6017-26, 2004.
22.Cully M, You H, Levine AJ and Mak TW, Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6(3): 184-92, 2006.
23.Chen TC, Hinton DR, Zidovetzki R and Hofman FM, Up-regulation of the cAMP/PKA pathway inhibits proliferation, induces differentiation, and leads to apoptosis in malignant gliomas. Lab Invest 78(2): 165-74, 1998.
24.Koivunen J, Aaltonen V and Peltonen J, Protein kinase C (PKC) family in cancer progression. Cancer Lett 235(1): 1-10, 2006.
25.Marrero MB, Banes-Berceli AK, Stern DM and Eaton DC, Role of the JAK/STAT signaling pathway in diabetic nephropathy. Am J Physiol Renal Physiol 290(4): F762-8, 2006.
26.Johnson GL and Lapadat R, Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600): 1911-2, 2002.
27.Wada T and Penninger JM, Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23(16): 2838-49, 2004.
28.Hindley A and Kolch W, Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J Cell Sci 115(Pt 8): 1575-81, 2002.
29.Xia Z, Dickens M, Raingeaud J, Davis RJ and Greenberg ME, Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240): 1326-31, 1995.
30.Ellinger-Ziegelbauer H, Kelly K and Siebenlist U, Cell cycle arrest and reversion of Ras-induced transformation by a conditionally activated form of mitogen-activated protein kinase kinase kinase 3. Mol Cell Biol 19(5): 3857-68, 1999.
31.Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M and Lowe SW, Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12(19): 3008-19, 1998.
32.Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW, Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5): 593-602, 1997.
33.Nabel EG, CDKs and CKIs: molecular targets for tissue remodelling. Nat Rev Drug Discov 1(8): 587-98, 2002.
34.Payton M and Coats S, Cyclin E2, the cycle continues. Int J Biochem Cell Biol 34(4): 315-20, 2002.
35.Obaya AJ and Sedivy JM, Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 59(1): 126-42, 2002.
36.Mulligan G and Jacks T, The retinoblastoma gene family: cousins with overlapping interests. Trends Genet 14(6): 223-9, 1998.
37.Hatakeyama M and Weinberg RA, The role of RB in cell cycle control. Prog Cell Cycle Res 1: 9-19, 1995.
38.Sherr CJ, Cancer cell cycles. Science 274(5293): 1672-7, 1996.
39.Harper JW and Elledge SJ, Cdk inhibitors in development and cancer. Curr Opin Genet Dev 6(1): 56-64, 1996.
40.Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G and Bartek J, Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature 375(6531): 503-6, 1995.
41.Sheaff RJ, Groudine M, Gordon M, Roberts JM and Clurman BE, Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 11(11): 1464-78, 1997.
42.Koh J, Enders GH, Dynlacht BD and Harlow E, Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature 375(6531): 506-10, 1995.
43.Abaza MS, Shaban F, Narayan RK and Atassi MZ, Human glioma associated intermediate filament proteins: over-expression, co-localization and cross-reactivity. Anticancer Res 18(2B): 1333-40, 1998.
44.Rajan P and McKay RD, Multiple routes to astrocytic differentiation in the CNS. J Neurosci 18(10): 3620-9, 1998.
45.Rutka JT, Murakami M, Dirks PB, Hubbard SL, Becker LE, Fukuyama K, Jung S, Tsugu A and Matsuzawa K, Role of glial filaments in cells and tumors of glial origin: a review. J Neurosurg 87(3): 420-30, 1997.
46.Pekny M, Eliasson C, Chien CL, Kindblom LG, Liem R, Hamberger A and Betsholtz C, GFAP-deficient astrocytes are capable of stellation in vitro when cocultured with neurons and exhibit a reduced amount of intermediate filaments and an increased cell saturation density. Exp Cell Res 239(2): 332-43, 1998.
47.Toda M, Miura M, Asou H, Toya S and Uyemura K, Cell growth suppression of astrocytoma C6 cells by glial fibrillary acidic protein cDNA transfection. J Neurochem 63(5): 1975-8, 1994.
48.Sadatomo T, Yoshida J, Wakabayashi T, Mizuno M, Harada K, Kurisu K, Uozumi T and Sugita K, New approach for the treatment of medulloblastoma by transfection with glial fibrillary acidic protein gene. Surg Oncol 5(2): 69-75, 1996.
49.Kokunai T, Izawa I and Tamaki N, Overexpression of p21WAF1/CIP1 induces cell differentiation and growth inhibition in a human glioma cell line. Int J Cancer 75(4): 643-8, 1998.
50.Morita K, Arimochi H, Itoh H and Her S, Possible involvement of 5alpha-reduced neurosteroids in adrenergic and serotonergic stimulation of GFAP gene expression in rat C6 glioma cells. Brain Res 1085(1): 49-56, 2006.
51.Lamers KJ, van Engelen BG, Gabreels FJ, Hommes OR, Borm GF and Wevers RA, Cerebrospinal neuron-specific enolase, S-100 and myelin basic protein in neurological disorders. Acta Neurol Scand 92(3): 247-51, 1995.
52.June CH, Bluestone JA, Nadler LM and Thompson CB, The B7 and CD28 receptor families. Immunol Today 15(7): 321-31, 1994.
53.Scotto C, Deloulme JC, Rousseau D, Chambaz E and Baudier J, Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis. Mol Cell Biol 18(7): 4272-81, 1998.
54.Schafer BW and Heizmann CW, The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem Sci 21(4): 134-40, 1996.
55.Kuroki T, Ikuta T, Kashiwagi M, Kawabe S, Ohba M, Huh N, Mizuno K, Ohno S, Yamada E and Chida K, Cholesterol sulfate, an activator of protein kinase C mediating squamous cell differentiation: a review. Mutat Res 462(2-3): 189-95, 2000.
56.Watters DJ and Parsons PG, Critical targets of protein kinase C in differentiation of tumour cells. Biochem Pharmacol 58(3): 383-8, 1999.
57.Carter CA, Protein kinase C as a drug target: implications for drug or diet prevention and treatment of cancer. Curr Drug Targets 1(2): 163-83, 2000.
58.Kim J, Yang HY and Jang YS, A G protein-associated ERK pathway is involved in LPS-induced proliferation and a PTK-associated p38 MAPK pathway is involved in LPS-induced differentiation in resting B cells. Mol Immunol 43(8): 1232-42, 2006.
59.Kim HH, Ahn KS, Han H, Choung SY, Choi SY and Kim IH, Decursin and PDBu: two PKC activators distinctively acting in the megakaryocytic differentiation of K562 human erythroleukemia cells. Leuk Res 29(12): 1407-13, 2005.
60.Kim SH, Oh SM and Kim TS, Induction of human leukemia HL-60 cell differentiation via a PKC/ERK pathway by helenalin, a pseudoguainolide sesquiterpene lactone. Eur J Pharmacol 511(2-3): 89-97, 2005.
61.Junttila I, Bourette RP, Rohrschneider LR and Silvennoinen O, M-CSF induced differentiation of myeloid precursor cells involves activation of PKC-delta and expression of Pkare. J Leukoc Biol 73(2): 281-8, 2003.
62.Kashiwagi M, Ohba M, Chida K and Kuroki T, Protein kinase C eta (PKC eta): its involvement in keratinocyte differentiation. J Biochem (Tokyo) 132(6): 853-7, 2002.
63.Bertolaso L, Gibellini D, Secchiero P, Previati M, Falgione D, Visani G, Rizzoli R, Capitani S and Zauli G, Accumulation of catalytically active PKC-zeta into the nucleus of HL-60 cell line plays a key role in the induction of granulocytic differentiation mediated by all-trans retinoic acid. Br J Haematol 100(3): 541-9, 1998.
64.Macfarlane DE and Manzel L, Activation of beta-isozyme of protein kinase C (PKC beta) is necessary and sufficient for phorbol ester-induced differentiation of HL-60 promyelocytes. Studies with PKC beta-defective PET mutant. J Biol Chem 269(6): 4327-31, 1994.
65.Ponzoni M, Lucarelli E, Corrias MV and Cornaglia-Ferraris P, Protein kinase C isoenzymes in human neuroblasts. Involvement of PKC epsilon in cell differentiation. FEBS Lett 322(2): 120-4, 1993.
66.Lee SM, Nguyen TH, Park MH, Kim KS, Cho KJ, Moon DC, Kim HY, Yoon do Y and Hong JT, EPO receptor-mediated ERK kinase and NF-kappaB activation in erythropoietin-promoted differentiation of astrocytes. Biochem Biophys Res Commun 320(4): 1087-95, 2004.
67.Carbonell WS and Mandell JW, Transient neuronal but persistent astroglial activation of ERK/MAP kinase after focal brain injury in mice. J Neurotrauma 20(4): 327-36, 2003.
68.Ma W and Quirion R, Partial sciatic nerve ligation induces increase in the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. Pain 99(1-2): 175-84, 2002.
69. Chen WK, Liao PH, Tsai CF and Lee YJ, Synthesis of Caffeic Acid Esters as Antioxidants by Esterification via Acyl Chlorides. Chin. Pharm. J. 51(4): 271-278, 1999.
70.Verbeek R, Plomp AC, van Tol EA and van Noort JM, The flavones luteolin and apigenin inhibit in vitro antigen-specific proliferation and interferon-gamma production by murine and human autoimmune T cells. Biochem Pharmacol 68(4): 621-9, 2004.
71.Michaluart P, Masferrer JL, Carothers AM, Subbaramaiah K, Zweifel BS, Koboldt C, Mestre JR, Grunberger D, Sacks PG, Tanabe T and Dannenberg AJ, Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res 59(10): 2347-52, 1999.
72.Matsumoto K, Moriuchi T, Koji T and Nakane PK, Molecular cloning of cDNA coding for rat proliferating cell nuclear antigen (PCNA)/cyclin. Embo J 6(3): 637-42, 1987.
73.Takanaga H, Yoshitake T, Hara S, Yamasaki C and Kunimoto M, cAMP-induced astrocytic differentiation of C6 glioma cells is mediated by autocrine interleukin-6. J Biol Chem 279(15): 15441-7, 2004.
74.Yoshimura S, Sakai H, Nakashima S, Nozawa Y, Shinoda J, Sakai N and Yamada H, Differential expression of Rho family GTP-binding proteins and protein kinase C isozymes during C6 glial cell differentiation. Brain Res Mol Brain Res 45(1): 90-8, 1997.
75.Na HK, Wilson MR, Kang KS, Chang CC, Grunberger D and Trosko JE, Restoration of gap junctional intercellular communication by caffeic acid phenethyl ester (CAPE) in a ras-transformed rat liver epithelial cell line. Cancer Lett 157(1): 31-8, 2000.
76.Natarajan K, Singh S, Burke TR, Jr., Grunberger D and Aggarwal BB, Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci U S A 93(17): 9090-5, 1996.
77.Fesen MR, Pommier Y, Leteurtre F, Hiroguchi S, Yung J and Kohn KW, Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem Pharmacol 48(3): 595-608, 1994.
78.Owuor ED and Kong AN, Antioxidants and oxidants regulated signal transduction pathways. Biochem Pharmacol 64(5-6): 765-70, 2002.
79.Medina I, Satue-Gracia MT, German JB and Frankel EN, Comparison of natural polyphenol antioxidants from extra virgin olive oil with synthetic antioxidants in tuna lipids during thermal oxidation. J Agric Food Chem 47(12): 4873-9, 1999.
80.Lopes GK, Schulman HM and Hermes-Lima M, Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim Biophys Acta 1472(1-2): 142-52, 1999.
81.Wenzel U, Kuntz S, Brendel MD and Daniel H, Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer Res 60(14): 3823-31, 2000.
82.Mariadason JM, Corner GA and Augenlicht LH, Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res 60(16): 4561-72, 2000.
83.Mittnacht S, Control of pRB phosphorylation. Curr Opin Genet Dev 8(1): 21-7, 1998.
84.Morris EJ and Dyson NJ, Retinoblastoma protein partners. Adv Cancer Res 82: 1-54, 2001.
85.Harbour JW and Dean DC, The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14(19): 2393-409, 2000.
86.Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y, Kandel ES, Lausch E, Christov K and Roninson IB, A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59(15): 3761-7, 1999.
87.Cook HW, Morash SC, Rose SD, Ridgway ND and Byers DM, Protein kinase C isoforms and growth, differentiation and phosphatidylcholine turnover in human neuroblastoma cells. J Lipid Mediat Cell Signal 14(1-3): 203-8, 1996.
88.Kronfeld I, Zsukerman A, Kazimirsky G and Brodie C, Staurosporine induces astrocytic phenotypes and differential expression of specific PKC isoforms in C6 glial cells. J Neurochem 65(4): 1505-14, 1995.
89.Brodie C, Kuperstein I, Acs P and Blumberg PM, Differential role of specific PKC isoforms in the proliferation of glial cells and the expression of the astrocytic markers GFAP and glutamine synthetase. Brain Res Mol Brain Res 56(1-2): 108-17, 1998.

1.Spira AI and Carducci MA, Differentiation therapy. Curr Opin Pharmacol 3(4): 338-43, 2003.
2.Altucci L and Gronemeyer H, The promise of retinoids to fight against cancer. Nat Rev Cancer 1(3): 181-93, 2001.
3.Scandura JM, Boccuni P, Cammenga J and Nimer SD, Transcription factor fusions in acute leukemia: variations on a theme. Oncogene 21(21): 3422-44, 2002.
4.Freemantle SJ, Spinella MJ and Dmitrovsky E, Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene 22(47): 7305-15, 2003.
5.Ross SA, McCaffery PJ, Drager UC and De Luca LM, Retinoids in embryonal development. Physiol Rev 80(3): 1021-54, 2000.
6.Linney E, Retinoic acid receptors: transcription factors modulating gene regulation, development, and differentiation. Curr Top Dev Biol 27: 309-50, 1992.
7.Laranjinha J and Cadenas E, Redox cycles of caffeic acid, alpha-tocopherol, and ascorbate: implications for protection of low-density lipoproteins against oxidation. IUBMB Life 48(1): 57-65, 1999.
8.Chen JH, Shao Y, Huang MT, Chin CK and Ho CT, Inhibitory effect of caffeic acid phenethyl ester on human leukemia HL-60 cells. Cancer Lett 108(2): 211-4, 1996.
9.Sud''ina GF, Mirzoeva OK, Pushkareva MA, Korshunova GA, Sumbatyan NV and Varfolomeev SD, Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett 329(1-2): 21-4, 1993.
10.Su ZZ, Lin J, Prewett M, Goldstein NI and Fisher PB, Apoptosis mediates the selective toxicity of caffeic acid phenethyl ester (CAPE) toward oncogene-transformed rat embryo fibroblast cells. Anticancer Res 15(5B): 1841-8, 1995.
11.Lee YJ, Liao PH, Chen WK and Yang CY, Preferential cytotoxicity of caffeic acid phenethyl ester analogues on oral cancer cells. Cancer Lett 153(1-2): 51-6, 2000.
12.Kuo HC, Kuo WH, Lee YJ, Lin WL, Chou FP and Tseng TH, Inhibitory effect of caffeic acid phenethyl ester on the growth of C6 glioma cells in vitro and in vivo. Cancer Lett, 234(9): 199-208, 2006.
13.Pitha-Rowe I, Petty WJ, Kitareewan S and Dmitrovsky E, Retinoid target genes in acute promyelocytic leukemia. Leukemia 17(9): 1723-30, 2003.
14.Dombret H, Scrobohaci ML, Daniel MT, Miclea JM, Castaigne S, Chomienne C, Fenaux P and Degos L, In vivo thrombin and plasmin activities in patients with acute promyelocytic leukemia (APL): effect of all-trans retinoic acid (ATRA) therapy. Leukemia 9(1): 19-24, 1995.
15.Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, Han ZG, Ni JH, Shi GY, Jia PM, Liu MM, He KL, Niu C, Ma J, Zhang P, Zhang TD, Paul P, Naoe T, Kitamura K, Miller W, Waxman S, Wang ZY, de The H, Chen SJ and Chen Z, Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89(9): 3345-53, 1997.
16.Jing Y, Xia L and Waxman S, Targeted removal of PML-RARalpha protein is required prior to inhibition of histone deacetylase for overcoming all-trans retinoic acid differentiation resistance in acute promyelocytic leukemia. Blood 100(3): 1008-13, 2002.
17.Jing Y, Dai J, Chalmers-Redman RM, Tatton WG and Waxman S, Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94(6): 2102-11, 1999.
18.Muto A, Kizaki M, Yamato K, Kawai Y, Kamata-Matsushita M, Ueno H, Ohguchi M, Nishihara T, Koeffler HP and Ikeda Y, 1,25-Dihydroxyvitamin D3 induces differentiation of a retinoic acid-resistant acute promyelocytic leukemia cell line (UF-1) associated with expression of p21(WAF1/CIP1) and p27(KIP1). Blood 93(7): 2225-33, 1999.
19.James SY, Williams MA, Newland AC and Colston KW, Leukemia cell differentiation: cellular and molecular interactions of retinoids and vitamin D. Gen Pharmacol 32(1): 143-54, 1999.
20.Collins SJ, Ruscetti FW, Gallagher RE and Gallo RC, Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci U S A 75(5): 2458-62, 1978.
21.Huberman E and Callaham MF, Induction of terminal differentiation in human promyelocytic leukemia cells by tumor-promoting agents. Proc Natl Acad Sci U S A 76(3): 1293-7, 1979.
22.Skalnik DG, Transcriptional mechanisms regulating myeloid-specific genes. Gene 284(1-2): 1-21, 2002.
23.Park DJ, Chumakov AM, Vuong PT, Chih DY, Gombart AF, Miller WH, Jr. and Koeffler HP, CCAAT/enhancer binding protein epsilon is a potential retinoid target gene in acute promyelocytic leukemia treatment. J Clin Invest 103(10): 1399-408, 1999.
24.Gilbert J, Baker SD, Bowling MK, Grochow L, Figg WD, Zabelina Y, Donehower RC and Carducci MA, A phase I dose escalation and bioavailability study of oral sodium phenylbutyrate in patients with refractory solid tumor malignancies. Clin Cancer Res 7(8): 2292-300, 2001.
25.Collins SJ, Acute promyelocytic leukemia: relieving repression induces remission. Blood 91(8): 2631-3, 1998.
26.Melnick A and Licht JD, Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93(10): 3167-215, 1999.
27.Zhu J, Gianni M, Kopf E, Honore N, Chelbi-Alix M, Koken M, Quignon F, Rochette-Egly C and de The H, Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci U S A 96(26): 14807-12, 1999.
28.Liu TX, Zhang JW, Tao J, Zhang RB, Zhang QH, Zhao CJ, Tong JH, Lanotte M, Waxman S, Chen SJ, Mao M, Hu GX, Zhu L and Chen Z, Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. Blood 96(4): 1496-504, 2000.
29.Muindi J, Frankel SR, Miller WH, Jr., Jakubowski A, Scheinberg DA, Young CW, Dmitrovsky E and Warrell RP, Jr., Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid "resistance" in patients with acute promyelocytic leukemia. Blood 79(2): 299-303, 1992.
30.Xu PQ and Gong JP, [Effect of all trans retinoid acid (ATRA) on differentiation and apoptosis of HL-60 cell]. Ai Zheng 23(2): 118-23, 2004.
31.Gueddari N, Madoulet C, Lefebvre P, Berthou L, Chomienne C and Jardillier JC, Partial restoration of all trans retinoic acid (ATRA) sensitivity by compactin in ATRA-resistant leukemic cells (ATRA-R HL-60). Leuk Res 24(6): 543-8, 2000.
32.Kosugi H, Towatari M, Hatano S, Kitamura K, Kiyoi H, Kinoshita T, Tanimoto M, Murate T, Kawashima K, Saito H and Naoe T, Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy. Leukemia 13(9): 1316-24, 1999.
33.Hofmanova J, Kozubik A, Dusek L and Pachernik J, Inhibitors of lipoxygenase metabolism exert synergistic effects with retinoic acid on differentiation of human leukemia HL-60 cells. Eur J Pharmacol 350(2-3): 273-84, 1998.
34.Collins SJ, Robertson KA and Mueller L, Retinoic acid-induced granulocytic differentiation of HL-60 myeloid leukemia cells is mediated directly through the retinoic acid receptor (RAR-alpha). Mol Cell Biol 10(5): 2154-63, 1990.
35.Tsai S, Bartelmez S, Heyman R, Damm K, Evans R and Collins SJ, A mutated retinoic acid receptor-alpha exhibiting dominant-negative activity alters the lineage development of a multipotent hematopoietic cell line. Genes Dev 6(12A): 2258-69, 1992.
36.Yen A, Roberson MS, Varvayanis S and Lee AT, Retinoic acid induced mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK) kinase-dependent MAP kinase activation needed to elicit HL-60 cell differentiation and growth arrest. Cancer Res 58(14): 3163-72, 1998.
37.Xia P, Aiello LP, Ishii H, Jiang ZY, Park DJ, Robinson GS, Takagi H, Newsome WP, Jirousek MR and King GL, Characterization of vascular endothelial growth factor''s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest 98(9): 2018-26, 1996.
38.Miller WH, Jr., Warrell RP, Jr., Frankel SR, Jakubowski A, Gabrilove JL, Muindi J and Dmitrovsky E, Novel retinoic acid receptor-alpha transcripts in acute promyelocytic leukemia responsive to all-trans-retinoic acid. J Natl Cancer Inst 82(24): 1932-3, 1990.
39.Napoli JL, Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin Immunol Immunopathol 80(3 Pt 2): S52-62, 1996.
40.Cornic M and Chomienne C, Induction of retinoid resistance by all-trans retinoic acid in acute promyelocytic leukemia after remission. Leuk Lymphoma 18(3-4): 249-57, 1995.
41.Chen Z, Wang ZY and Chen SJ, Acute promyelocytic leukemia: cellular and molecular basis of differentiation and apoptosis. Pharmacol Ther 76(1-3): 141-9, 1997.
42.Kogan SC and Bishop JM, Acute promyelocytic leukemia: from treatment to genetics and back. Oncogene 18(38): 5261-7, 1999.
43.Niitsu N, Higashihara M and Honma Y, The catalytic DNA topoisomerase II inhibitor ICRF-193 and all-trans retinoic acid cooperatively induce granulocytic differentiation of acute promyelocytic leukemia cells: candidate drugs for chemo-differentiation therapy against acute promyelocytic leukemia. Exp Hematol 30(11): 1273-82, 2002.
44.Pisano C, Kollar P, Gianni M, Kalac Y, Giordano V, Ferrara FF, Tancredi R, Devoto A, Rinaldi A, Rambaldi A, Penco S, Marzi M, Moretti G, Vesci L, Tinti O, Carminati P, Terao M and Garattini E, Bis-indols: a novel class of molecules enhancing the cytodifferentiating properties of retinoids in myeloid leukemia cells. Blood 100(10): 3719-30, 2002.
45.Nagai J, Yazawa T, Okudela K, Kigasawa H, Kitamura H and Osaka H, Retinoic acid induces neuroblastoma cell death by inhibiting proteasomal degradation of retinoic acid receptor alpha. Cancer Res 64(21): 7910-7, 2004.
46.Gianni M, Bauer A, Garattini E, Chambon P and Rochette-Egly C, Phosphorylation by p38MAPK and recruitment of SUG-1 are required for RA-induced RAR gamma degradation and transactivation. Embo J 21(14): 3760-9, 2002.
47.Della Ragione F, Cucciolla V, Criniti V, Indaco S, Borriello A and Zappia V, Antioxidants induce different phenotypes by a distinct modulation of signal transduction. FEBS Lett 532(3): 289-94, 2002.
48.Delva L, Cornic M, Balitrand N, Guidez F, Miclea JM, Delmer A, Teillet F, Fenaux P, Castaigne S, Degos L and et al., Resistance to all-trans retinoic acid (ATRA) therapy in relapsing acute promyelocytic leukemia: study of in vitro ATRA sensitivity and cellular retinoic acid binding protein levels in leukemic cells. Blood 82(7): 2175-81, 1993.
49.Sokoloski JA, Hodnick WF, Mayne ST, Cinquina C, Kim CS and Sartorelli AC, Induction of the differentiation of HL-60 promyelocytic leukemia cells by vitamin E and other antioxidants in combination with low levels of vitamin D3: possible relationship to NF-kappaB. Leukemia 11(9): 1546-53, 1997.
50.Kang SN, Lee MH, Kim KM, Cho D and Kim TS, Induction of human promyelocytic leukemia HL-60 cell differentiation into monocytes by silibinin: involvement of protein kinase C. Biochem Pharmacol 61(12): 1487-95, 2001.
51.Amir H, Karas M, Giat J, Danilenko M, Levy R, Yermiahu T, Levy J and Sharoni Y, Lycopene and 1,25-dihydroxyvitamin D3 cooperate in the inhibition of cell cycle progression and induction of differentiation in HL-60 leukemic cells. Nutr Cancer 33(1): 105-12, 1999.
52.Sokoloski JA and Sartorelli AC, Induction of the differentiation of HL-60 promyelocytic leukemia cells by nonsteroidal anti-inflammatory agents in combination with low levels of vitamin D3. Leuk Res 22(2): 153-61, 1998.
53.Singh S and Aggarwal BB, Activation of transcription factor NF-kappa B is suppressed by curcumin (diferuloylmethane) [corrected]. J Biol Chem 270(42): 24995-5000, 1995.
54.Huang Y, Boskovic G and Niles RM, Retinoic acid-induced AP-1 transcriptional activity regulates B16 mouse melanoma growth inhibition and differentiation. J Cell Physiol 194(2): 162-70, 2003.
55.Miller AM, Kobb SM and McTiernan R, Regulation of HL-60 differentiation by lipoxygenase pathway metabolites in vitro. Cancer Res 50(22): 7257-60, 1990.
56.Liu Y, Chang RL, Cui XX, Newmark HL and Conney AH, Synergistic effects of curcumin on all-trans retinoic acid- and 1 alpha,25-dihydroxyvitamin D3-induced differentiation in human promyelocytic leukemia HL-60 cells. Oncol Res 9(1): 19-29, 1997.
57.Balasubramanyam M, Sampathkumar R and Mohan V, Is insulin signaling molecules misguided in diabetes for ubiquitin-proteasome mediated degradation? Mol Cell Biochem 275(1-2): 117-25, 2005.
58.Tanaka T, Rodriguez de la Concepcion ML and De Luca LM, Involvement of all-trans-retinoic acid in the breakdown of retinoic acid receptors alpha and gamma through proteasomes in MCF-7 human breast cancer cells. Biochem Pharmacol 61(11): 1347-55, 2001.
59.Danilenko M, Wang Q, Wang X, Levy J, Sharoni Y and Studzinski GP, Carnosic acid potentiates the antioxidant and prodifferentiation effects of 1alpha,25-dihydroxyvitamin D3 in leukemia cells but does not promote elevation of basal levels of intracellular calcium. Cancer Res 63(6): 1325-32, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top