跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉俊岑
研究生(外文):Jun-Chin Liu
論文名稱:奈米銀線合成技術及其在薄膜太陽電池的應用
論文名稱(外文):Synthesis of Silver Nanowires and Its Application on Thin-Film Solar Cells
指導教授:貢中元貢中元引用關係
指導教授(外文):Chung-Yuan Kung
口試委員:林延儒王裕銘張書通黃俊達
口試委員(外文):Yan-ru linYu-ming wangShu-Tong ChangJun-Dar Hwang
口試日期:2015-06-23
學位類別:博士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:105
中文關鍵詞:奈米銀線太陽電池
外文關鍵詞:Nano silver wiresolar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:442
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本論文採用多元醇法(polyol process)合成銀奈米線,在實驗結果方面,利用乙二醇在高溫時具有還原特性,將硝酸銀(AgNO3)還原出銀原子,並加入聚乙烯?咯烷酮(N-vinylpyrrolidone, PVP)保護劑幫助銀奈米線成長,最後成功製備直徑約為50 nm左右且長度約為15 μm左右的銀奈米線,利用開發出的奈米銀線原液,混合高分子與分散濟等有機化學藥品進行奈米銀透明導電漿料備製,並獲得經過最佳化的銀奈米線透明導電薄膜有著寬頻譜 (400-1200 nm)大約92%的高穿透率以及低於9.2Ω/sq的片電阻,相當接近商規氧化銦錫(ITO)薄膜。
以非真空奈米銀線透明導電漿料製作前電極於CIGS太陽電池,取代需用真空濺鍍技術沉積i-ZnO及AZO的雙層結構,可獲得的兩項優勢:第一是網印製程技術能直接將透明導電膜圖案化,而減少一道雷射開口製程,達到快速量產的目的。第二是本技術是非真空環境下即可製作而成,不需利用昂貴的真空設備,俱備低廉的設備建置。以非真空奈米銀線透明導電漿料製作前電極的CIGS太陽電池,元件光電轉換效率為η =7.09%,相較以真空濺鍍法製作電極的對照組元件光電轉換效率為η =8.2%,實驗組的轉換效率略差,但驗證此製程技術的可行性,將此製程技術應用於CIGS太陽電池。
利用銀奈米線與片狀結構之銀粉合成製作成高反射之銀膠,將其應用於非晶矽太陽電池上,經過摻入奈米銀線導電膠之片電阻由5.4 mΩ/square下降到4.9mΩ/square,從此結果可以證明加入奈米銀線可以有效增加導電膠之導電性。並利用片狀之結構有效提高反射至49%,相較於使用真空濺鍍製程之銀金屬電極的反射率39%有顯著的提升,最後將高反射導電膠應用至非晶矽太陽能電池做為背電極,實驗組元件光電轉換效率η= 9.02%,優於真空濺鍍元件光電轉換效率η =8.28%,證實銀奈米線提升了非晶矽太陽電池效能,此外也達成低成本開發的優勢,本研究所開發之高反射與高穿透導電膠料,其耐熱溫度為200 OC,若製程溫度過高,易造成高分子成份變異,使得元件效能下降。


In this thesis, silver nanowires are synthesized using a polyol method. Study results to know the use of glycol having reducing properties at high temperatures. The silver nitrate (AgNO3) reduction of silver atoms and N-vinylpyrrolidone (PVP) protection agents helps silver nanowire growth. The silver nanowires with diameters and lengths of approximately 40-80 nm and 10-30 μm were achieved. In addition, use developed silver nanowires liquid, mixing the polymer with dispersant organic chemicals were transparent conductive nanoscale silver paste formulations, and get through the best of the silver nanowires transparent conductive film. At an optimal condition, about 92% of the high light transmittance rate was obtained at wavelength region between 400 nm to 1200 nm by optical measurement, and meantime, low sheet resistance of 9.2 Ω/sq. was found. The silver nanowires paste experimental results quite close to traditional indium tin oxide (ITO) film.
Non-vacuum nano silver transparent conductive paste which as the front contact on CIGS thin-film solar cells, it replaces the need to use i-ZnO and AZO of the two-layer structure in a vacuum-sputtering deposition technique. This approach can get two benefits: First, screen printing process technology directly patterning the transparent conductive film, it may be omitted opening window by a traditional laser process, achieve the purpose of rapid mass production. Secondly, this technique is non-vacuum environment can be made without the use of expensive vacuum equipment, non-vacuum process tool is very low-cost fee. Initial active-area efficiency of 7.09% was achieved, although it is not reached ideal performance compared with sputtering silver cell efficiency of 8.2%. However, the process is to determine the feasibility of the CIGS solar cells.
In this study determined the average total reflectance of the sheet silver conductor film was higher from 39% increase to 49%, compared with the sputtering silver sample, indicating that the sheet silver film exhibited superior scattering properties. The sheet silver mixed silver nanowires, this electrodes paste developed lower sheet resistivity, from 5.4 mΩ/square decrease to 4.9 mΩ/square, indicating that the mixed silver nanowires contributed to an enhanced electrical properties. According to above results found, the proposed highly reflective sheet silver conductor and silver nanowires back contact reflector layer (BR), fabricated using a nonvacuum process for a-Si thin-film solar cells. These cells can yield excellent light trapping properties and cells performance in compare with sputtering silver BR devices. It achieved the optimal initial active area efficiency of 9.02%, this result batter than the sputtering silver sample an efficiency of 8.28%. Therefore suggested that the sheet silver conductor and silver nanowires as back contact reflector layer is a suitable candidate for high-performance and low-cost a-Si thin-film solar cells.
The study development of conductive paste material, the heat-resistant temperature is 200 OC, if the process temperature is too high lead to polymer composition variation, so that the devices performance degradation.


誌謝 i
摘要 ii
Abstract iv
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1研究動機與目的 1
1.2研究架構與項目 7
第二章 奈米銀線與導電膠料合成 12
2.1奈米銀線的成長機制及製備方法 12
2.1.1氣-液-固成長法 12
2.1.2模板合成法 13
2.1.3零維(0-D)奈米結構之自組裝(self-assembly) 18
2.1.4多元醇合成法 23
2.1.5 合成奈米銀線各技術發展比較 27
2.2 製備銀奈米線 29
2.2.1 實驗藥品 29
2.2.2 實驗設備 29
2.3 合成奈米銀線導電膠料 33
2.4 結果與討論 34
2.4.1不同PVP/AgNO3 比例的影響 34
2.4.2改變前驅物濃度的影響 37
2.4.3 PVP分子量對合成的影響 40
2.4.4晶種濃度對合成影響 43
2.4.5反應溫度對合成影響 45
2.4.6界面活性劑對電性及光性的影響 53
2.4.7透明導電漿料的製備: 54
2.4.8 高反射導電膠 59
2.4.9實驗室最佳數據 62
2.4.10產品化與國際指標比較 63
2.4.11產品耐用環境測試 64
第三章 奈米銀應用於CIGS薄膜太陽能電池 65
3.1 CIGS薄膜太陽能電池簡介 65
3.2 實驗步驟 67
3.3結果與討論 71
第四章 奈米銀應用於非晶矽太陽能電池 75
4.1非晶矽太陽能電池簡介 75
4.2 實驗步驟 76
4.3 結果與討論 79
第五章 結論 94
第六章 附件 97
6.1自動化反應槽體開發 97
6.2自動化反應槽體 97
參考文獻 102


[1]D.P. Langley, G. Giusti, M. Lagrange, R. Collins, C. Jiménez, Y. Bréchet, D. Bellet, Solar Energy Materials & Solar Cells, Vol. 125, pp. 318-324, 2014.
[2]C. Preston, Z. Fang, J. Murray, H. Zhu, J. Dai, J. N. Munday, L. Hu, J. Mater. Chem. C, Vol. 2, pp. 1248-1254, 2014.
[3]H. Mao, Jinyang. Feng, X. Ma, C. Wu, X. Zhao, J Nanopart Res, Vol. 14, pp. 887, 2012.
[4]M. R. Johan, N. A. K. Aznan, Soo. T. Yee, I. H. Ho, S. W. Ooi, N..D. Singho, and F. Aplop, Journal of Nanomaterials, Vol. 2014, pp.105454, 2014.
[5]A. Amirjani, P. Marashi, D. H. Fatmehsari, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 444, pp. 33–39, 2014.
[6]S. K. Lee, J. S. Kim, E. H. Kim, M. H. Suh, S. Man. Koo, Journal of Ceramic Processing Research. Vol. 16, pp. 32-36, 2015.
[7]G. E. Possin, Rev. Sci. Instrum. , Vol. 41, pp. 772, 1970.
[8]Ochanda, F.; Jones, W. E. Langmuir, Vol. 23, pp. 795, 2007.
[9]Xu, X. J.; Fei, G. T.; Wang, X. W.; Jin, Z.; Yu, W. H.; Zhang, L. D. Mater. Lett., Vol. 61, pp. 19, 2007.
[10]Zong, R. L.; Zhou, J.; Li, Q.; Du, B.; Li, B.; Fu, M.; Qi, X. W.; Li, L. T.; Buddhudu, S. J. Phys. Chem. B, Vol. 108, pp.16713, 2004.
[11]Huang, M. H.; Choudrey, A.; Yang, P. Chem. Commun. Vol. 2000, pp. 1063, 2000.
[12]Han, Y. J.; Kim, J. M.; Stucky, G. D. Chem. Mater., Vol. 12, pp.2068, 2000.
[13]Govindaraj, A.; Satishkumar, B. C.; Nath, M.; Rao, C. N. R. Chem. Mater., Vol. 12, pp. 202, 2000.
[14]E. Kurowska, A. Brzózka, M. Jarosz, G.D. Sulkaa, M. Jaskuła, Electrochimica Acta, Vol. 104, pp. 439, 2013.
[15]Grzegorz D. Sulka, Agnieszka Brzózka, Leszek Zaraska, Marian Jaskuła, Electrochimica Acta. Vol. 55, pp. 4368, 2010.
[16]Xu, X. J.; Fei, G. T.; Wang, X. W.; Jin, Z.; Yu, W. H.; Zhang, L. D. Mater. Lett., Vol. 61, pp.19, 2007.
[17]Kim, S. H.; Choi, B. S.; Kang, K.; Choi, Y. S.; Yang, S. I., J Alloy Compd, Vol.433, pp. 261-264, 2007.
[18]Murphy, C. J.; Jana, N. R. Adv. Mater., Vol. 14, pp. 80, 2002.
[19]Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Commun., pp. 617-618, 2001.
[20]Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B, Vol. 109, pp. 13857, 2005.
[21]Sun, Y., Mayers, D., Herricks, T., Xia, Y., Nano Lett., 3 (2003),955.
[22]Gai, P. L., Harmer, M. A., Nano Lett., Vol. 2, pp. 7, 2002.
[23]Liao, H., Hafner, J., J. Phys. Chem. B., Vol. 108, pp. 19267, 2004.
[24]Fievet, F.; Lagier, J. P.; Blin, B.; Beaudoin, B. & Figlarz, M., Solid State Ionics, Vol. 32, pp. 198, 1989.
[25]Sun, Y. G. & Xia, Y. N., Materials, Vol. 14, pp. 833, 2002.
[26]Sun, Y.; Yin, Y.; Mayers, B. T.; Herricks, T.; Xia, Y. Chem. Mater., Vol. 14, pp. 4736, 2002.
[27]C. J. Johnson, J. Mater. Chem, Vol. 12, pp.1765, 2002.
[28]B. Wiley, Y. Sun, Y. Xia, Acc. Chem. Res., Vol. 40, pp. 1067, 2007.
[29]Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. Nano Lett., Vol. 3, pp. 955, 2003.
[30]Choi, J.; Sauer, G.; Nielsch, K.; Wehrspohn, R. B.;Gosele, U. Chem. Mater., Vol. 15, pp. 776, 2003.
[31]Wu, Y. Y.; Livneh, T.; Zhang, Y. X.; Cheng, G.; Wang,J.; Tang, J.; Moskovits, M.; Stucky G. D. Nano Lett., Vol. 4, pp. 2337, 2004.
[32]Day, T. M.; Unwin, P. R.; Wilson, N. R.; Macpherson,J. V. J. Am. Chem. Soc., Vol. 127, pp. 10639, 2005.
[33]Braun, E, Eichen, Y, Sivan, U, Ben-Yoseph, G. Nature, Vol. 391, pp. 19, 1998.
[34]Sun, Y. G.; Xia, Y. N. Science, Vol. 298, pp. 2176, 2002.
[35]H.S. Lee et al., Acta Materialia, Vol. 83, pp. 84-90, 2015.
[36]Yen, M.-Y.; Chiu, C.-W.; Hsia, C.-H.; Chen, F.-R.; Kai,J.-J.; Lee, C.-Y.; Chiu, H.-T. Adv. Mater., Vol. 15, pp.235, 2003.
[37]Hsia, C.-H.; Yen, M.-Y.; Lin, C.-C.; Chiu, H.-T.; Lee,C.-Y. J. Am. Chem. Soc., Vol. 125, pp. 9940, 2003.
[38]Springer J., Poruba A., Müllerova L., ET AL .,J. Appl. Phys., Vol. 95, pp. 1427, 2004.
[39]J. Springer, B. Rech, W. Reetz, J. Muller, and M. Vanecek, Solar Energy Materials and Solar Cells, Vol. 85, pp.1, 2005.
[40]Liu J.C., Lin C.C., Chen Y.H., ET AL .,Int. J. Photoenergy, Vol. 2014, pp. 627127-1, 2014.
[41]Sze M., Ng K.K.: ‘ Physics of semiconductor devices ’ (John Wiley & Sons, Inc., Hoboken, New Jersey, 2007).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top