跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣茵其
研究生(外文):Chiang, Inchi
論文名稱(外文):Mining Cyclically Repeated Patterns with Multiple Minimum Supports: a Prefix-projected Based Approach
指導教授:胡雅涵胡雅涵引用關係
指導教授(外文):Hu, Yahan
口試委員:蔡志豐黃正魁吳帆
口試委員(外文):Tsai, ChihfongHuang, ChengkuiWu, Fan
口試日期:2011/06/28
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊管理學系暨研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:36
外文關鍵詞:Data miningsequential patterncyclic pattern miningmultiple minimum supports
相關次數:
  • 被引用被引用:0
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
In business applications, there have been tremendous interests in analyzing customers’ repeated purchase behavior. Recently, the concepts of periodic pattern and cyclic pattern are used to discover recurring patterns from customer sequence database. Toroslu (2003) proposed cyclic pattern mining, which considers a new parameter, named repetition support, into the mining process. In a customer sequence, the occurrence of a subsequence must satisfy single user-specified repetition minimum support. In real-life applications, however, different items may have different frequencies in the database. If all items are set to have the same minimum repetition support, it may cause rare item problem. To solve this problem, we include the concept of multiple minimum supports (MMS) to allow users to specify multiple minimum item repetition support (MIR) according to the natures of items. In this paper, we first redefine cyclic sequential patterns based on MIR and original form of customer minimum support. A new algorithm, rep-PrefixSpan, is developed to discover complete set of cyclic sequential patterns from sequence database. The experimental result shows that the proposed approach achieves more preferable findings than conventional cyclic pattern mining.
Abstract 1
1. Introduction 2
2. Related work 5
2.1 sequential pattern mining 5
2.2 Periodic pattern and cyclic pattern mining 5
2.3 Multiple minimum supports (MMS) 8
2.4 Summary 10
3. Problem definition 11
4. The rep-PrefixSpan Algorithm 17
4.1 Step 1. Find 1-CSPs 20
4.2 Step 2. Divide search space 20
4.3 Step 3. Find subsets of CSPs 21
5. Experimental study 24
5.1 Data 24
5.1 Performance evaluation 25
6. Conclusion 30
7. Reference 31



[1]M. J. Shaw, C. Subramaniam, G. W. Tan, and M. E. Welge, “Knowledge Management and Data Mining for Marketing”, Decision Support Systems, vol. 31, no. 1, pp. 127-137, 2001.
[2]R. Srikant and Y. Yang, “Mining Web Logs to Improve Website Organization,” in Proceedings of the 10th International World Wide Web Conference, Hong Kong, Hong Kong, pp. 430-437, 2001.
[3]Y. H. Tao, T. P. Hong, and Y. M. Su, “Web Usage Mining with Intentional Browsing Data,” Expert Systems with Applications, vol. 34, no. 3, pp. 1893-1904, April 2008.
[4]F. R. Lin, K. J. Huang, and N. S. Chen, “Integrating Information Retrieval and Data Mining to Discover Project Team Coordination Patterns,” Decision Support Systems, vol. 42, no. 2, pp. 745-758, November 2006.
[5]M. S. Chen, J. Han, and P. S. Yu, “Data Mining: an Overview from A Database Perspective,” IEEE Transaction on Knowledge and Data Engineering, vol. 8, pp. 866-886, 1996.
[6]W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus, “Knowledge Discovery in Databases: An Overview,” Knowledge Discovery in Databases, G. Piatetsky-Shapiro and W .J. Frawley, eds., pp. 1-27. AAAI/MIT Press, 1991.
[7]J. Han, and M. Kamber, “Data Mining: Concepts and Techniques,” Academic Press, New York, 2001.
[8]R. Cooley, B. Mobasher, and J. Srivastava, “Data Preparation for Mining World Wide Web Browsing Patterns,” In Journal of Knowledge & Information Systems, vol. 1, no. 1, 1999.
[9]M. Ester, “A Top-down Method for Mining Most Specific Frequent Patterns in Biological Sequence Data,” In Proceeding the fourth SIAM International Conference on Data Mining, pp.90-104, 2004.
[10]C. A. Kulikowski, “Pattern Recognition Approach to Medical Diagnosis,” IEEE Trans Syst Man Cybern, vol. 6, pp. 173-178, 1970.
[11]S. Vijayalakshmi, V. Mohan, and S. R. Suresh, “Mining Constraint-based Multidimensional Frequent Sequential Pattern in Web Logs,” European Journal of Scientific Research, vol. 36, no. 3, pp. 480-490, 2009.
[12]K. Wang, Y. Xu, and J. X. Yu, “Scalable Sequential Pattern Mining for Biological Sequences,” In Proceeding of the Sixth ACM SIGKDD International Conference on Knowledge Management, pp.178-187, 2004.
[13]I. H. Toroslu, “Repetition Support and Mining Cyclic Patterns,” Expert Systems with Applications, vol. 25, no. 3, pp. 303-311, 2003.
[14]B. Liu, W. Hsu, and Y. Ma, “Mining Association Rules with Multiple Minimum Supports,” In ACM SIGKDD international conference on Knowledge discovery and data mining, San Diego, CA, USA, 1999, pp. 15-18.
[15]M. V. Joshi, G. Karypis, and V. Kumar, “A Universal Formulation of Sequential Patterns,” In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 2001, pp. 1–21.
[16]M. J. Zaki, “Sequence mining in categorical domains: incorporating efficient algorithms for mining sequential patterns with time constraints,” in Proceedings of the 9th International Conference on Information and Knowledge Management, McLean, Virginia, USA, p. 422–429, 2000.
[17]Y. H. Hu, and Y. L. Chen, “Mining Association Rules with Multiple Minimum Supports: A New Mining Algorithm and A Support Tuning Mechanism,” Decision Support Systems, vol. 42, pp. 1-24, 2006.
[18]R. Agrawal and R. Srikant, “Mining Sequential patterns,” in Proceeding of 1995 International Conference on Data Engineering, pp. 3-14.
[19]R. Srikant and R. Agrawal, “Mining sequential patterns: Generalizations and Performance Improvements,” in Proceedings of the 5th International Conference on Extending Database Technology, pp. 3–17, 1996.
[20]M. J. Zaki, “SPADE: An efficient algorithm for mining frequent sequences.” Machine Learning Journal, vol. 42, iss. 1, pp. 31–60, 2001.
[21]J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal and M.-C. Hsu, “FreeSpan: frequent pattern-projected sequential pattern mining,” in Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, New York, USA, pp. 355–359, 2000
[22]J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M. C. Hsu, “Mining Sequential Patterns by Pattern-growth: The PrefixSpan Approach,” IEEE Transactions on knowledge and data engineering, vol.16, no. 10, pp. 1424-1440, 2004.
[23]B. Ozden, S. Ramaswamy, and A. Silberschatz, “Cyclic Association Rules,” In Proceedings of the 14th International Conference on Data Engineering, Orlando, Florida, USA, 1998, pp. 412-421.
[24]J. Han, G. Dong, and Y. Yin, “Efficient Mining of Partial Periodic Patterns in Time Series Database,” In Proceedings of the 15th International Conference on Data Engineering, Sydney, NSW, Australia, 1999, pp. 106-115.
[25]D. A. Chiang, C. T. Wang, S. P. Chen, and C. C. Chen, “The Cyclic Model Analysis on Sequential Patterns,” IEEE transactions on knowledge and data engineering, vol. 21, no. 11, 2009.
[26]Y. S. Lee and S. J. Yena, “Incremental and interactive mining of web traversal patterns,” Information Sciences, vol 178, iss 2, pp. 287-306, 2008.
[27]H. F. Li, “A sliding window method for finding top-k path traversal patterns over streaming Web click-sequences,” Expert Systems with Applications, vol 36, iss 3, pp. 4382-4386, 2009.
[28]Y. T. Wang and Anthony J.T. Lee, “Mining Web navigation patterns with a path traversal graph,” Expert Systems with Applications, vol 38, iss 6, pp. 7112-7122, 2011.
[29]P.-H. Wu, W.-C. Peng and M.-S. Chen, “Mining Sequential Alarm Patterns in a Telecommunication Database,” In Proceedings of Workshop on Databases in Telecommunications (VLDB 2001), pp. 37–51, 2001.
[30]S. A. Ibrahim, O. Folorunso, and O. B. Ajayi, “Knowledge discovery of closed frequent calling patterns in a telecommunication database,” in proceeding of the 2005 information science and IT education joint conference, Arizona, USA, pp.137-148, 2005.
[31]J. Yang, W. Wang and P. S. Yu, “InfoMiner: Mining Surprising Periodic Patterns”, ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, pp. 395-400, 2001.
[32]G. Lee, W. Yang, and J. M. Lee, “A Parallel Algorithm for Mining Multiple Partial Periodic Patterns,” Information Sciences, vol. 176, no. 24, 15, pp. 3591-3609, 2006.
[33]A. K. Mahanta, F. A. Mazarbhuiya, and H. K. Baruah, “Finding Calendar-based Periodic Patterns,” Pattern Recognition Letters, vol. 29, no. 9, pp. 1274-1284, 2008.
[34]Bettini, X. S. Wang, and S. Jajodia, “Mining Temporal Relationships with Multiple Granularities in Time Sequences,” Data Engineering Bulletin, vol. 21, pp. 32-38, 1998.
[35]M. Leleu, C. Rigotti, J.-F. Boulicaut, and G. Euvrard, “Constraint-Based Mining of Sequential Patterns over Datasets with Consecutive Repetitions,” In Proceedings of the seventh European conference on principles and practice of knowledge discovery in databases (PKDD 03), pp. 303–314, 2003.C.
[36]B. Ding, D. Lo, J. Han, and S.-C. Khoo, “Efficient Mining of Closed Repetitive Gapped Subsequences from A Sequence Database” in proceeding of the 25th International Conference on Data Engineering (ICDE'09), pp. 1024-1035, 2009.
[37]R. U. Kiran and P. K. Reddy, “Improved Approaches To Mine Rare Association Rules in Transactional Databases,” In Proceeding of the Fourth SIGOD PhD Workshop on Innovative Database Research, Indianapolis, USA, 2010, pp.19-24.
[38]R. U. Kiran and P. K. Reddy, “Mining Periodic-Frequent Patterns with Maximum Items’ Support Constraints,” in Proceedings of the Third Annual ACM Bangalore Conference, Bangalore, India, 2010.
[39]Y. H. Hu, C. K Huang, H. R. Yang, and Y. L. Chen, “On Mining Multi-time-interval Sequential Patterns,” Data & Knowledge Engineering, vol. 68, pp. 1112-1127, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 許凱鈞:〈《水滸傳》梁山泊文化景觀析論〉,《臺北教育大學語文集刊》第18期2010年10月1日,頁77-128。
2. 許麗芳:〈章回小說中的韻文運用與相關意義:以百回本及百二十回本《水滸傳》之比較為中心 〉,《嘉大中文學報》2010年3月,頁149-176。
3. 許麗芳:〈士庶價值意識之對話與辯證:《三國演義》及《水滸傳》對歷史人事的道德想像〉,《慈濟大學人文社會科學學刊》2008年6月,頁188-220。
4. 李豐楙:〈暴力敘述與謫凡神話:中國敘事學的結構問題〉,《中國文哲研究通訊》第十七卷第三期2007年9月,頁147-153。
5. 李志宏〈在天道循環與人事際遇之間--論《水滸傳》敘事的後設命題及其話語構成〉,《東華人文學報》2007年1月,頁107-156。
6. 劉承炫:〈金聖歎《水滸傳》評點之敘事話語的探究〉,《中國文化大學中文學報》13期2006年10月,頁113-130。
7. 郭玉雯:〈《水滸傳》之構成與金聖歎的詮釋--以宋江為核心〉,《漢學研究》第23卷第1期2005年6月,頁227-260。
8. 李金松:〈金批「水滸傳」的批評方法研究〉,《漢學研究》第20卷第2期2002年12月,頁217-248。
9. 侯迺慧:〈《水滸傳》的特殊正義結構〉,《中國古典文學研究》第七期2002年6月,頁189-212。
10. 陳文尚:〈存在空間的結構〉,《地學彙刊》1986年3月第5期,頁130-148。
11. 鄭志明:〈社區文化的宇宙圖式與神聖空間〉《鵝湖月刊》312期2001年6月,頁30-41。
12. 鄒睿怡:〈段義孚(Yi-Fu Tuan)論家「家」之形成與意義〉,《獨者 台灣基督徒思想論刊》第十六期2008年,頁231-261。
13. 曹勝雄,孫君儀:〈建構地方依附因果關係模式〉,《地理學報》2009年第55期,頁43-63。
14. 王應棠:〈棲居與空間 海德格空間思維的轉折〉,《地理學報》2009年4月第55期,頁25-42。
15. 曾旭正:〈地點、場所或所在論“place”的中譯及其啟發〉,《地理學報》2010年第58期,頁115-132。