跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 01:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇俊傑
研究生(外文):Jun-Jie Su
論文名稱:車載網路中防治危險駕駛之研究
論文名稱(外文):Prevention of Dangerous Driving for VANETs
指導教授:周立德周立德引用關係
指導教授(外文):Li-der Chou
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:114
中文關鍵詞:警示策略偵測車載網路危險駕駛
外文關鍵詞:VANETsdangerous drivingdetectionwarning strategy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於近代汽車工業的發達,生產線技術的提升,使得近代汽車生產速度越來越
快, 全球車輛數也是不斷地增加, 根據OICA(Organization International des
Constructeurs d''Automobiles)的統計,21 世紀以來,全世界每年生產的汽車至少都有
5000 萬輛以上,其中在2010 年以及2011 年更突破了7500 萬輛汽車被生產出來。隨著
車輛數增加,也伴隨著許多交通問題產生,像是交通事故發生、交通壅塞等,這也成
為各國政府棘手的問題。
隨著電腦及通訊系統的進步, 各國致力於發展智慧性運輸系統(Intelligent
Transportation Systems,簡稱ITS),智慧性運輸系統結合了電子、通信、電腦、控制及
感測等技術應用在各種運輸系統,透過即時資訊傳輸,以改進交通安全與服務的問題。
車載網路(Vehicular Ad hoc networks,簡稱VANETs)是智慧性運輸系統中一項重要的技
術,車載網路藉著安裝在車輛上的OBU(On Board Unit)和道路上的RSU(Road Side Unit)
所建構成一個動態的網路拓撲,使車輛間得以互相溝通,如此一來便能藉著車載網路
發展更多網路應用,如安全訊息傳播、氣象報告、即時車況回報等。
面對交通安全問題上,不斷改善交通安全以提供所有用路人一個安全的道路環境
而減少意外事故的發生是智慧型運輸系統的一個重要目標,根據中華民國交通部的97
年到100 年交通事故肇事原因統計,駕駛人因素的比例高達96%,其中包括了酒駕失
控、超速違規..等。
本論文提出一防治危險駕駛的機制,道路上車輛利用車載網路彼此交換訊息,以
判定出車輛違規情形,並給予車輛建議策略,以預防可能發生的危險情況。最後本論
文利用模擬實驗的方式,將此機制施行前後所造成影響進行分析。在實施機制後碰撞
次數可降低42.95%;於違反安全距離次數可以降低43.02%;於違反超速或低速情形可
降低14.02%;於變換車道次數可降低42.71%;於違反頻繁變換車道次數可降低
35.56%。使用防治危險駕駛的機制能夠有效降低車輛發生交通意外,維持道路交通安
全。
Since the development of automobile industry technology and production skills, the
production rate of automobiles raises dramatically. Moreover, the number of vehicles
continuously increases in the world. In 21th century, according to the OICA (Organization
International des Constructeurs d''Automobiles) the number of new vehicles over 50 million
every year. There are more over 75 million new vehicles produced in 2010 and 2011. Since
the cars getting more and more, there are more and more traffic problems happened. Traffic
accidents and traffic congestion become many countries’ thorny problem.
With the development of computer and communication technology, each country attends
to develop intelligent transportation systems (ITS), which combine electrics, communication,
computer, control and sensor techniques to apply to many kinds of transportation system. ITS
can improve the traffic safety and traffic service through the real-time information
transportation. Vehicular Ad hoc network (VANETs) is one important technique of the
intelligent transportation systems. Vehicular Ad hoc networks utilize the networks composed
by OBU (On Board Unit) and RSU(Road Side Unit) to take communication between cars.
Therefore, the Vehicular Ad hoc network skills could expand more networks application
which likes safety message dissemination and weather forecasting and real-time situation of
vehicles. To improve the traffic safety and decrease the traffic accidents is the most important
target of Intelligent Transportation System. According to the statistics of “why traffic accident
happen?” from Ministry of Transportation Communications from 2008 to 2011, we find out
that the driver is the critical reason; it takes account for the proportion 96 percentage. Driver
factors include speeding and drunk driving…etc.
This paper proposes a prevention of dangerous driving scheme for on-road vehicle use
VANET to exchange messages with each other to determine whether a vehicle dangerous and
to give the vehicles suggested strategy to prevent possible dangerous situations. Finally, use
NCTUns 6.0 simulator to simulate several experiments, before and after this mechanism for
the purposes of impact analysis. By the result of simulation, it improves 42.95% for collisions,
it improves 43.02% for violation of safety distance, it improves 14.02% for violation of speed
variance, it improves 42.71% for the number of lane change and it improves 35.56% for
violation of lane change frequency. This scheme can reduce vehicle traffic accidents, and
maintain road traffic safety.
目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 xi
1. 緒論 1
1.1. 概要 1
1.2. 研究動機與目標 3
1.3. 論文架構 6
2. 背景知識及相關研究 7
2.1. 車載網路 7
2.2. 訊息廣播 .9
2.3. 安全距離 9
2.4. 不適當轉向角度 12
2.5. 速度變化 13
2.6. 切換車道 14
2.7. 酒駕及疲勞駕駛 15
2.8. 結論與比較 19
3. 車載網路危險駕駛偵測機制 20
3.1. 研究模型與假設 20
3.2. 偵測及判斷機制 20
3.2.1 速度變化偵測及建議模組 27
3.2.2 安全距離偵測及建議模組 29
3.2.3 不適當轉向角度偵測及建議模組 30
3.2.4 頻繁變換車道偵測及建議模組 37
3.2.5 酒醉駕駛或疲勞駕駛建議模組 39
4. 模擬結果與討論 . 42
4.1. 模擬環境與測量指標 42
4.2. 實驗一︰車輛數多寡於低密度高速公路對於車輛違規情形之影響 44
4.3. 實驗二︰車輛數多寡於高密度高速公路對於車輛違規情形之影響 50
4.4. 實驗三:危險車輛於低密度高速公路對於車輛違規情形之影響 56
4.5. 實驗四:危險車輛於高密度高速公路對於車輛違規情形之影響 61
4.6. 實驗五︰低速危險車輛類型對於車輛違規情形之影響 67
4.6.1 低速危險車輛類型對於車輛違規情形之影響 (60 輛車) 68
4.6.2 低速危險車輛類型對於車輛違規情形之影響 (250 輛車) 71
4.7. 實驗六︰高速危險車輛類型對於車輛違規情形之影響 75
4.7.1 高速危險車輛類型對於車輛違規情形之影響 (60 輛車) 76
4.7.2 高速危險車輛類型對於車輛違規情形之影響 (250 輛車) 79
4.8. 實驗七︰酒駕危險車輛類型對於車輛違規情形之影響 83
4.8.1 酒駕危險車輛類型對於車輛違規情形之影響 (60 輛車) 84
4.8.2 酒駕危險車輛類型對於車輛違規情形之影響 (250 輛車) 88
5. 結論與未來工作 94
5.1. 結論 94
5.2. 研究限制 95
5.3. 未來發展工作 95
參考文獻 97
[1] Organisation Internationale des Constructeurs d''Automobiles (OICA),
http://www.oica.net/
[2] Organisation for Economic Co-operation and Development (OECD),
http://www.oecd.org
[3] K. Suriyapaibonwattana, “An Effective Safety Alert Broadcast Algorithm for VANET,”
Proceedings of IEEE International Symposium on Communications and Information
Technologies, pp.247-250, 2008.
[4] K. Suriyapaibonwattana, “An adaptive alert message dissemination protocol for VANET
to improve road safety,” Proceedings of IEEE International Conference on Fuzzy
Systems, pp.1639-1644, 2009.
[5] The Research and Innovative Technology Administration (RITA),
http://www.rita.dot.gov/
[6] ISO - International Organization for Standardization, http://www.iso.org/
[7] ISO 15623, Transport Information and Control Systems-Forward Vehicle Collision
Warning Systems-Performance Requirements and Test Procedures
[8] Smart Motorist, http://www.smartmotorist.com/traffic-and-safety-guideline/maintain-asafe-
following-distance-the-3-second-rule.html
[9] World Health Organization (WHO), http:// www.who.int/
[10] The Australian Transport Safety Bureau (ATSB), http://www.atsb.gov.au/
[11] W. Nelson, “Continuous-curvature paths for autonomous vehicles,” Proceedings of
IEEE International Conference on Robotics and Automation, vol. 3, pp.1260-1264, 1989.
[12] T. Shamir, “How should an autonomous vehicle overtake a slower moving vehicle:
design and analysis of an optimal
[13] L. S. Jin, W.P. Fang, Y. N. Zhang, S. B. Yang, H. J. Hou, “Research on safety lane
change model of driver assistant system on highway,” Proceedings of IEEE
International Conference on Intelligent Vehicles Symposium, pp.1051-1, 2009.
[14] G. Xu, L. Liu, Z. Song, Y. Ou, “Generating lane-change trajectories using the dynamic
model of driving behavior,” Proceedings of IEEE International Conference on
Information and Automation (ICIA), pp.464-469, 2011.
[15] E. Tian, “Driver characteristics in the lane change process,” Proceedings of IEEE
International Conference on Remote Sensing, Environment and Transportation
Engineering (RSETE) , pp.3093-3096, 2011.
[16] Y. Kanayama, “Smooth local path planning for autonomous vehicles,” Proceedings of
IEEE International Conference on Robotics and Automation, vol 3,pp.1265-1270, 1989.
[17] T. Umedu, K. Isu, T. Higashino, C.K. Toh, “An Intervehicular-Communication Protocol
for Distributed Detection of Dangerous Vehicles,” IEEE Transactions on Vehicular
Technology, vol 59, Issue 2, pp.627-637, 2010.
[18] J. M. Utts, and R.F. Heckard, Statistical Ideas and Methods, Cengage Learning, Jan. 26,
2005.
[19] Normal distribution, http://en.wikipedia.org/wiki/Normal_distribution
[20] M. Sakairi, “Water-Cluster-Detecting Breath Sensor and Applications in Cars for
Detecting Drunk or Drowsy Driving,” IEEE Sensors Journal, vol 12, Issue 5, pp.1078-
1083, 2012
[21] J. Teng, X. Bai, Z. Shen, D. Xuan, “Mobile Phone Based Drunk Driving Detection,”
Proceedings of IEEE Pervasive Computing Technologies for Healthcare, pp.1-8, 2010
[22] The American Academy of Dental Sleep Medicine (AADSM),
http://www.aadsm.org/pdfs/drowsydrivingfacts.pdf
[23] NCTUns 6.0 Network Simulator and Emulator, http://nsl.csie.nctu.edu.tw/nctuns.html
[24] S.Y. Wang and C.L. Chou, “NCTUns Tool for Wireless Vehicular Communication
Network Researches,” Simulation Modelling Practice and Theory, vol. 17, No. 7, pp.
1211-1226, Aug. 2009.
[25] S.Y. Wang, C.L. Chou, C. C. Lin, and C.H. Huang, “The Protocol Developer Manual for
the NCTUns 6.0 Network Simulator and Emulator,”
http://nsl10.csie.nctu.edu.tw/support/documentation/DeveloperManual.pdf
[26] S.Y. Wang, C.L. Chou, and C.C. Lin, “The GUI User Manual for the NCTUns 6.0
Network Simulator and Emulator,” http://nsl10.csie.nctu.edu.tw/support/
documentation/GUIManual.pdf
[27] Transportation Research Institute Oregon State University,” Stopping Sight Distance
And Decision Sight Distance,”
http://www.oregon.gov/ODOT/HWY/ACCESSMGT/docs/StopDist.pdf
[28] Collision avoidance system, http://en.wikipedia.org/wiki/Collision_avoidance_system
[29] 內政部警政署, http://www.npa.gov.tw/
[30] 中華智慧型運輸系統協會, http://www.its-taiwan.org.tw/
[31] 中華民國交通部, http://www.motc.gov.tw
[32] 中華民國內政部, http://www.moi.gov.tw/
[33] 交通部臺灣區國道高速公路局, http://www.freeway.gov.tw
[34] 交通部運輸研究所, “駕駛人行為反應之研究—酒醉駕車對駕駛行為之分析研究”
http://www.iot.gov.tw/
[35] 朱禮伶,”應用駕駛模擬器探討酒後駕駛行為反應之研究,” 國立成功大學交通管理科
學系碩士班碩士論文, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top