|
1.白日霞; 薛業, 一種水溶黑粉菌多糖的結構和抗腫瘤活性研究(英文). 中國藥物化學雜志 1999, 20-23. 2.張寶艷; 高增貴; 莊敬華; 張小飛; 趙輝, 玉米絲黑穗病菌菌絲在寄主體內的生長過程. 種子 2008, 8-9. 3.連耘愷. 黑龍菇菌種發酵液生物活性探討. 南台科技大學, 台南縣, 2005. 4.陳智偉, 在多重網板氣舉式反應器中以饋料批次培養生產幾丁聚醣. 國立清華大學, 新竹市, 2000. 5.董純婷, 網狀內管氣舉式反應器混合效能之探討. 國立清華大學, 新竹市, 2001. 6.Banuett, F., Pathogenic development in Ustilago maydis: a progression of morphological transitions that results in tumor formation and teliospore production. Mycol. Ser. 2002, 15, 349-398. 7.Bartnicki-Garcia, S., III. Mold-yeast dimorphism of mucor. Microbiol. Mol. Biol. Rev. 1963, 27, 293. 8.Brandl, M.; Lindow, S., Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl. Environ. Microbiol. 1996, 62, 4121. 9.Brandl, M. T.; Lindow, S. E., Environmental signals modulate the expression of an indole-3-acetic acid biosynthetic gene in Erwinia herbicola. Mol. Plant. Microbe Interact. 1997, 10, 499-505. 10.Broek, A. V.; Gysegom, P.; Ona, O.; Hendrickx, N.; Prinsen, E.; Van Impe, J.; Vanderleyden, J., Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression. Mol. Plant. Microbe Interact. 2005, 18, 311-323. 11.Budde, A. D.; Leong, S. A., Characterization of siderophores from Ustilago maydis. Mycopathologia 1989, 108, 125-133. 12.Chung, K. R.; Tzeng, D. D., Biosynthesis of indole-3-acetic acid by the gall-inducing fungus Ustilago esculenta. J. Biol. Sci. 2004, 4, 744-750. 13.Cohen, J., The immunopathogenesis of sepsis. Nature 2002, 420, 885-891. 14.Cornejo-Mazon, M.; Jaramillo-Flores, M. E.; Villa-Tanaca, L.; Hernandez-Sanchez, H., Optimization of Biomass Production by Ustilago maydis in Submerged Culture using Taguchi Experimental Design. Biotechnology 2008, 7, 818-821. 15.Costacurta, A.; Keijers, V.; Vanderleyden, J., Molecular cloning and sequence analysis of an Azospirilium brasilense indole-3-pyruvate decarboxylase gene. Mol. Genet. Genomics 1994, 243, 463-472. 16.Fluharty, A. L.; O''Brien, J. S., A mannose-and erythritol-containing glycolipid from Ustilago maydis. Biochemistry (Mosc). 1969, 8, 2627-2632. 17.Frautz, B.; Lang, S.; Wagner, F., Formation of cellobiose lipids by growing and resting cells of Ustilago maydis. Biotechnol. Lett 1986, 8, 757-762. 18.Gallay, P.; Heumann, D.; Le Roy, D.; Barras, C.; Glauser, M., Mode of action of anti-lipopolysaccharide-binding protein antibodies for prevention of endotoxemic shock in mice. Proc. Natl. Acad. Sci. 1994, 91, 7922. 19.Glickmann, E.; Dessaux, Y., A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 1995, 61, 793. 20.Goldsby, R.; Kindt, T.; Osborne, B.; Kuby, J., Leukocyte migration and inflammation. Immunology, 5th ed. WH Freeman & Co., New York, NY 2003, 338-360. 21.Graziewicz, M.; Wink, D. A.; Laval, F., Nitric oxide inhibits DNA ligase activity: potential mechanisms for NO-mediated DNA damage. Carcinogenesis 1996, 17, 2501. 22.Haskins, R., Biochemistry of the Ustilaginales: I. Preliminary cultural studies of Ustilago zeae. Can. J. Res. 1950, 28, 213-223. 23.Isoda, H.; Kitamoto, D.; Shinmoto, H.; Matsumura, M.; Nakahara, T., Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Biosci. Biotechnol. Biochem. 1997, 61, 609. 24.Isoda, H.; Shinmoto, H.; Kitamoto, D.; Matsumura, M.; Nakahara, T., Differentiation of human promyelocytic leukemia cell line HL60 by microbial extracellular glycolipids. Lipids 1997, 32, 263-271. 25.Isoda, H.; Shinmoto, H.; Matsumura, M.; Nakahara, T., Succinoyl trehalose lipid induced differentiation of human monocytoid leukemic cell line U937 into monocyte-macrophages. Cytotechnology 1995, 19, 79-88. 26.Jaiswal, M.; LaRusso, N. F.; Burgart, L. J.; Gores, G. J., Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism. Cancer Res. 2000, 60, 184. 27.Jensen, J. B.; Egsgaard, H.; Van Onckelen, H.; Jochimsen, B. U., Catabolism of indole-3-acetic acid and 4-and 5-chloroindole-3-acetic acid in Bradyrhizobium japonicum. J. Bacteriol. 1995, 177, 5762-5766. 28.Jones, L.; Abdalla, D.; Freitas, J., Effects of indole-3-acetic acid on croton oil-and arachidonic acid-induced mouse ear edema. Inflamm. Res. 1995, 44, 372-375. 29.Karpuzoglu, E.; Ahmed, S. A., Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide 2006, 15, 177-186. 30. Kobayashi, G. S., Medoff, G., Maresca, B., Sacco, M. & Kumar, B. V. (1985). Studies on phase transition in the dimorphic pathogen Histoplasma capsdatum. In Fungal Dimorphism, with Emphasis on Fungi Pathogenic for Humans, pp. 69-91. Edited by P. J. Szaniszlo. New York: Plenum Press. 31.Koga, J.; Adachi, T.; Hidaka, H., Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Mol. Gen. Genet. 1991, 226, 10-16. 32.Kramer, H. J.; Kessler, D.; Hipler, U. C.; Irlinger, B.; Hort, W.; Bodeker, R. H.; Steglich, W.; Mayser, P., Pityriarubins, novel highly selective inhibitors of respiratory burst from cultures of the yeast Malassezia furfur: comparison with the bisindolylmaleimide arcyriarubin A. Chembiochem 2005, 6, 2290-2297. 33.Kurz, M. et al.,. Ustilipids, acylated beta-D-mannopyranosyl D-erythritols from Ustilago maydis and Geotrichum candidum. J. Antibiot. (Tokyo) 2003, 56, 91–101. 34.Lemieux, R., The biochemistry of the Ustilaginales: III. The degradation products and proof of the chemical heterogeneity of ustilagic acid. Can. J. Chem. 1951, 29, 415-425. 35.Lizarraga-Guerra, R.; Lopez, M. G., Monosaccharide and alditol contents of huitlacoche (Ustilago maydis). J. Food Compost. Anal. 1998, 11, 333-339. 36.Luderitz, O.; Freudenberg, M. A.; Galanos, C.; Lehmann, V.; Rietschel, E. T.; Shaw, D. H., Lipopolysaccharides of gram-negative bacteria. Curr. Top. Membr. 1982, 17, 79-151. 37.Marti’ nez, V.; Osuna, J.; Paredes-Lo’ pez, O.; Guevara, F., Production of indole-3-acetic acid by several wild-type strains of Ustilago maydis. World J. Microbiol. Biotechnol. 1997, 13, 295-298. 38.Miller, S. I.; Ernst, R. K.; Bader, M. W., LPS, TLR4 and infectious disease diversity. Nat. Rev. Microbiol. 2005, 3, 36-46. 39.Minghetti, L., Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 2004, 63, 901. 40.Morrissette, N.; Gold, E.; Aderem, A., The macrophage--a cell for all seasons. Trends Cell Biol. 1999, 9, 199. 41.Mourao, L. R. M. B.; Santana, R. S. S.; Paulo, L. M.; Pugine, S. M. P.; Chaible, L. M.; Fukumasu, H.; Dagli, M. L. Z.; de Melo, M. P., Protective action of indole‐3‐acetic acid on induced hepatocarcinoma in mice. Cell Biochem. Funct. 2009, 27, 16-22. 42.Navarre, D.; Damann, K., Synthesis of indole-3-acetic acid by Ustilago maydis, abstr. A784. Phytopathology 1990, 80, 1055. 43.Ona, O.; Impe, J.; Prinsen, E.; Vanderleyden, J., Growth and indole‐3‐acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. FEMS Microbiol. Lett. 2005, 246, 125-132. 44.Ona, O.; Smets, I.; Gysegom, P.; Bernaerts, K.; Van Impe, J.; Prinsen, E.; VANDERLEYDEN, J., The effect of pH on indole-3-acetic acid (IAA) biosynthesis of Azospirillum brasilense Sp7. Symbiosis 2003, 35, 199-208. 45.Patten, C. L.; Glick, B. R., Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 1996, 42, 207-220. 46.Patten, C. L.; Glick, B. R., Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 2002, 68, 3795. 47.Prinsen, E.; Costacurta, A.; Michiels, K.; Vanderleyden, J.; Van Onckelen, H., Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Mol. Plant Microbe Interact. 1993, 6, 609-609. 48.Raetz, C. R. H., Biochemistry of endotoxins. Annu. Rev. Biochem. 1990, 59, 129-170. 49.Reed, R.; Holder, M., The antibacterial spectrum of ustilagic acid. Can. J. Med. Sci. 1953, 31, 505. 50.Rodriguez, C.; Dominguez, A., The growth characteristics of Saccharomycopsis lipolytica: morphology and induction of mycelium formation. Can. J. Microbiol. 1984, 30, 605-612. 51.Roxburgh, J.; Spencer, J.; Sallans, H., Submerged Culture Fermentation, Factors Affecting the Production of Ustilagic Acid by Ustilago Zeae. J. Agric. Food. Chem. 1954, 2, 1121-1124. 52.Ruiz-Herrera, J.; Leon, C. G.; Guevara-Olvera, L.; Carabez-Trejo, A., Yeast-mycelial dimorphism of haploid and diploid strains of Ustilago maydis. Microbiology 1995, 141, 695. 53.Ruiz-Herrera, J.; Martinez-Espinoza, A. D., The fungus Ustilago maydis, from the aztec cuisine to the research laboratory. Int. Microbiol. 1998, 1, 149-158. 54. San-Blas, F. & San-Blas, G. (1985). Paracoccidioides brasifiensis. In Fungal Dimorphism with Emphasis on Fungi Pathogenic for Humans, p p. 93-120. Edited by P. J. Szaniszlo. New York: Plenum Press. 55.Sanchez‐Marroquin, A.; Ledezma, M.; Barreiro, J., Oxygen transfer and scale‐up in lysine production by Ustilago maydis mutant. Biotechnol. Bioeng. 1971, 13, 419-429. 56.Sanchez-Marroquin, A.; Ledezma, M.; Carreno, R., Sugar substrates for L-lysine fermentation by Ustilago maydis. Appl. Environ. Microbiol. 1970, 20, 687. 57. Soll, D. R. (1985). Candida afbicans. In Fungal Dimorphism with Emphasis on Fungi Pathogenic for Humans, pp. 167-195. Edited by P. J. Szaniszlo. New York: Plenum Press. 58.Sosa-Morales, M.; Guevara-Lara, F.; Martinez-Juarez, V.; Paredes-Lopez, O., Production of indole-3-acetic acid by mutant strains of Ustilago maydis (maize smut/huitlacoche). Appl. Microbiol. Biotechnol. 1997, 48, 726-729. 59.Spaepen, S.; Vanderleyden, J.; Remans, R., Indole‐3‐acetic acid in microbial and microorganism‐plant signaling. FEMS Microbiol. Rev. 2007, 31, 425-448. 60.Sporn, M.; Roberts, A. B., Peptide growth factors and inflammation, tissue repair, and cancer. J. Clin. Invest. 1986, 78, 329. 61.Teng, S. F.; Sproule, K.; Husain, A.; Lowe, C. R., Affinity chromatography on immobilized "biomimetic" ligands. Synthesis, immobilization and chromatographic assessment of an immunoglobulin G-binding ligand. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2000, 740, 1-15. 62.Theunis, M.; Kobayashi, H.; Broughton, W. J.; Prinsen, E., Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol. Plant. Microbe Interact. 2004, 17, 1153-1161. 63.Thippeswamy, T.; McKay, J.; Quinn, J.; Morris, R., Nitric oxide, a biological double-faced janus-Is this good or bad? Histol. Histopathol. 2006, 21, 445-58. 64.Trikha, M.; Corringham, R.; Klein, B.; Rossi, J. F., Targeted anti-interleukin-6 monoclonal antibody therapy for cancer. Clin. Cancer Res. 2003, 9, 4653-4665. 65.Tsurumi, S.; Wada, S., Identification of 3-hydroxy-2-indolone-3-acetylaspartic acid as a new indole-3-acetic acid metabolite in Vicia roots. Plant Cell Physiol. 1986, 27, 559. 66.Valverde-Gonzalez, M. E., Estudios Sobre la Infeccion de Ustilago maydis (Huitlacoche) ysus Caracteristicas Alimentarias, M.Sc. Thesis,CINVESTAV-IPN, Irapuato, Mexico, 1992. 67.van Horssen, R.; ten Hagen, T. L. M.; Eggermont, A. M. M., TNF-α in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 2006, 11, 397-408. 68.Wolf, F. T., The production of indole acetic acid by Ustilago zeae, and its possible significance in tumor formation. Proc. Natl. Acad. Sci. U. S. A. 1952, 38, 106-111. 69.Wolf, F. T., The utilization of carbon and nitrogen compounds by Ustilago zeae. Mycologia 1953, 45, 516-522. 70.Yen, G. C.; Lai, H. H., Inhibition of reactive nitrogen species effects in vitro and in vivo by isoflavones and soy-based food extracts. J. Agric. Food. Chem. 2003, 51, 7892-7900. 71.Zimmer, W.; Wesche, M.; Timmermans, L., Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7: sequencing and functional analysis of the gene locus. Curr. Microbiol. 1998, 36, 327-331. 72.Zuther, K.; Mayser, P.; Hettwer, U.; Wu, W.; Spiteller, P.; Kindler, B. L. J.; Karlovsky, P.; Basse, C. W.; Schirawski, J., The tryptophan aminotransferase Tam1 catalyses the single biosynthetic step for tryptophan‐dependent pigment synthesis in Ustilago maydis. Mol. Microbiol. 2008, 68, 152-172.
|