[1] BP世界能源統計年鑑, http://www.bp.com/statisticalreview ; 2013.
[2] Martin A. Green et al., Solar cell efficiency tables (version 43), Prog. Photovolt: Res. Appl. 22:1–9, 2014.
[3] A.C. Jones and M.L. Hitchman, Chemical vapor deposition: precursors, processes and applications, Royal society of chemistry, 2009.
[4] 林民和, 利用氮氫和水氣電漿處理改善原子層化學氣相沉積HfO2高介電閘極氧化薄膜之熱穩定性, 國立清華大學材料科學與工程所碩士論文, 2009.[5] S.M. Sze, Semiconductor devices: physics and technology, 2nd Edition, Wiley, 2001.
[6] A.G. Aberle, Surface passivation of crystalline silicon solar cells: a review, Prog. Photovolt: Res. Appl. 8:473-487, 2000.
[7] 周仁鈞, MOS 結構的電容-電壓曲線之量測與應用, 國立清華大學材料科學與工程所碩士論文, 2008.[8] W.D. Eades, Capacitance-voltage measurements of MOS capacitors: theory and practice, Stanford University, 1984.
[9] M. Kuhn, A quasi-static technique for MOS C-V and surface state measurements, Solid-state Electronics. Vol. 13, pp. 873-885, 1970.
[10] L.M. Terman, An investigation of surface state at a silicon/silicon oxide interface employing metal-oxide-silicon diodes, Solid-state Electronics. Vol. 5, pp. 285-299, 1962.
[11] E.H. Nicollian and A. Goetzberger, The Si-SiO2 interface-electrical properties as determined by the metal-insulator-silicon conductance technique, The bell system technical journal, 1967.
[12] E. M. Vogel et al, Limitations of conductance to the measurement of the interface state density of MOS capacitors with tunneling gate dielectrics, IEEE trans. Electron Device. Vol. 47, NO. 3,2000.
[13] J.L. Zhang, Modeling of direct tunneling and surface roughness effects on C-V characteristics of ultra-thin gate MOS capacitors, Solid-state Electronics. Vol. 45, pp.373-377, 2001
[14] K.S.K Kwa et al, A model for capacitance reconstruction from measured lossy MOS capacitance–voltage characteristics, Semicond. Sci. Technol. 18.82-87, 2003.