|
參考文獻 1. Gerard IE , and Karen HV. Proliferation, cell cycle and apoptosis in cancer. Nature, 411: 342 — 348, 2001. 2. Bishop JM. Cancer: the rise of the genetic paradigm. Genes & Development, 9: 1309-1315, 1995. 3. Hartwell LH and Kastan MB. Cell cycle control and cancer. Science, 266: 1821-8, 1994. 4. Wada RK, Seeger RC, Brodeur GM, Einhorn PA, Rayner SA, Tomayko MM, and Reynolds CP. Human neuroblastoma cell lines that express N-myc without gene amplification. Cancer, 72: 3346-54, 1993. 5. Ghisalberti EL. Propolis: a review. Bee World, 60: 59-84, 1979. 6. Cirasino L, Pisati A, and Fasani F. Contact dermatitis from propolis. Contact Dermatitis, 16: 110-111, 1987. 7. Monti M, Berti E, Carminati G, and Cusini M. Occupational and cosmetic dermatitis from propolis. Contact Dermatitis, 9: 163, 1983 8. Arctander S. Perfume and Flavor. Materials of Natural Origin. pp. 736. S. Arctander, Elizabeth, NJ, 1960. 9. Bankova VS, Popov SS, and Marekov NL. A study on flavonoids of propolis. Journal of Natural Products, 46: 471-474, 1983 10. Ghisalberti EL. Propolis: a review. Bee World, 60:59-84, 1979. 11. Bankova V, Christov R, Kujumgiev A, Marcucci MC, and Popov S. Chemical composition and antibacterial activity of Brazilian propolis. Zeitschrift fur Naturforschung. Section C. Journal of Biosciences, 50: 167-72, 1995. 12. Kujumgiev A, Bankova V, Ignatova A, and Popov S. Antibacterial activity of propolis, some of its components and their analogs. Pharmazie, 48: 785-6, 1993. 13. Greenaway W, Scaysbrook T, and Whatley FR. The analysis of bud exudate of Poppulus x euramericana, and of propolis, by gas chromatography-mass spectrometry. Proceedings of the Royal Society, London B, 232: 249-272, 1987. 14. Greenaway W, May J, Scaysbrook T, and Whatley FR. Identification by gas chromatography-mass spectrometry of 150 compounds in propolis. Zeitschrift fur Naturforschung, 46c: 111-121, 1991. 15. Greenaway W, Scaysbrook T, and Whatley FR. The composition and plant origins of propolis: a repor of work at Oxford. Bee World, 71: 107-118, 1990. 16. Kaneeda J and Nishina T. Safety of propolis Acute toxicity. Honeybee Science, 15: 29-33, 1994. 17. Burdock GA. Review of the Biological Properties and Toxicity of Bee Propolis (Propolis). Food and Chemical Toxicology, 36: 347-363, 1998. 18. Schneidewind EM, Kala H, Linzer B, and Metzner J. The constitutents of propolis Pharmazie, 30: 803, 1975. 19. Digrak M, Yilmaz O, and Ozcelik S. In vitro anti- microbial effect of propolis collected in Elazig region. Turkish Journal of Biology, 19: 249-257, 1995. 20. Dobrowolski JW, Vohora SB, Sharma K, Shah SA, Naqvi SAH, and Dandiya PC. Antibacterial, antifungal, antiamoebic, anti-inflammatory and antipyretic studies on propolis bee products. Journal of Ethnopharmacology, 35: 77-82, 1991 21. DeCastro SL and Higashi KO. Effect of different formulations of propolis on mice infected with Trypanosoma cruzi. Journal of Ethnopharmacology, 46: 55-58, 1995. 22. Ban J, Popovic S, and Maysinger D. Cytostatic effects of propolis in vitro. Acta Pharmaceutica Jugoslavica, 33: 245-255, 1983. 23. Frenkel K, Wei H, Bhimani R, Ye J, Zadunaisky JA, Huang MT, Ferraro T, Conney AH, and Grunberger D. Inhibition of tumor promoter mediated processes in mouse skin and bovine lens by caffeic acid phenethyl ester. Cancer Research, 53: 1255-1261, 1993. 24. Grundberger D, Banerjee R, Eisinger K, Oltz E, M Efros L, Caldwell M, Estevez V and Nakanish K. Preferential cytotoxicity on tumor cells by caffeic acid phenethyl ester isolated from propolis. Experientia, 44: 230-232, 1988. 25. Su ZZ, Grunberger D and Fisher PB. Suppression of adenovirus type 5 E1A-mediated trans-formation and expression of the transformed phenotype by caffeic acid phenethyl ester (CAPE). Molecular Carcinogenesis, 4: 231-242, 1991. 26. Su ZZ, Lin J, Grunberger D and Fisher PB. Growth suppression and toxicity induced by caffeic acid phenethyl ester (CAPE) in type 5 adenovirus transformed rat embryo cells correlate directly with transformation progression. Cancer Research, 54: 1865-1870, 1994. 27. Chiao C, Carothers AM, Grunberger D, Solomon G, Preston GA, and Barrett JC. Apoptosis and altered redox state induced by caffeic acid phenethyl ester (CAPE) in transformed rat fibroblast cells. Cancer Research, 55: 3576-3583, 1995. 28.Li D, Saldeen T, Romeo F, and Mehta JL. Oxidatized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: the potential role of transcription factor NF-kappaB. Circulation, 102: 1970-1976, 2000. 29.Fitzpatrick LR, Wang J, and Le T. Caffeic acid phenethyl ester, an inhibitor of nuclear factor-kappaB, attenuates bacterial peptidoglycan polysaccharide-induced colitis in rats. Journal of Pharmacology & Experimental Therapeutics, 299: 915-920, 2001. 30.Song YS, Park EH, Hur GM, Ryu YS, Lee YS, Lee JY, Kim YM, and Jin C. Caffeic acid phenethyl ester inhibits nitric oxide synthase gene expression and enzyme activity. Cancer Letters, 175: 53-61, 2002. 31.Green DR and Reed JC. Mitochondria and apoptosis. Science, 281: 1309—1312, 1998. 32.Hockenbery D, Nunez G, Milliman C, Schreiber RD, and Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature, 348: 334—336, 1990. 33.Zhu, W, Cowie A, Wasfy GW, Penn LZ, Leber B, and Andrews DW. Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. European Molecular Biology Organization Journal, 15: 4130—4141, 1996. 34.Hsu YT, Wolter KG, and Youle RJ. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proceedings of the National Academy of Sciences, 94: 3668—3672, 1997. 35.Gross, A, Jockel J, Wei MC, and Korsmeyer SJ. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. European Molecular Biology Organization Journal, 17: 3878—3885, 1998. 36.Puthalakath H, Huang DC, O’Reilly LA, King SM, and Strasser A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Molecular Cell, 3: 287—296, 1999. 37.Kelekar, A. Bcl-2-family proteins: the role of the BH3 domain in apoptosis. Trends in Cell Biology, 8: 324—330, 1998. 38.Goping, IS. Regulated targeting of BAX to mitochondria. Journal of Cellular Biochemistry, 143: 207—215, 1998. 39.Kluck, RM. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science, 275: 1132—1136, 1997. 40.Vander Heiden, Matthew G. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell, 91: 627—637, 1997. 41. Goping IS, Gross A, Lavoie JN, Nguyen M, Jemmerson R, Roth K, Korsmeyer SJ, and Shore GC. Regulated targeting of BAX to mitochondria. Journal of Cell Biology, 143:207-15, 1998. 42.Desagher S. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. Journal of Cell Biology, 144: 891—901,1999. 43.Rossé, T. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature, 391: 496—499, 1998. 44.Eskes, R. Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. Journal of Cell Biology, 143: 217—224, 1998. 45.Finucane DM. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. Journal of Biological Chemistry, 274: 2225—2233, 1999. 46.Desagher S. Bid-induced conformational change of Bax responsible for mitochondrial cytochrome c release during apoptosis. Journal of Cell Biology, 144: 891—901, 1999. 47.Downward J. How BAD phosphorylation is good for survival. Nature Cell Biology, 1: E33—E35, 1999. 48.Hall M and Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Advances in Cancer Research, 68: 67-108, 1996. 49.Faragher RG and Kipling D. How might replicative senescence contribute to human ageing? Bioessays, 20: 985-91, 1998. 50.Arellano M and Moreno S. Regulation of CDK/cyclin complexes during the cell cycle. International Journal of Biochemistry & Cell Biology, 29: 559-73, 1997. 51.Mittnacht S. Control of pRB phosphorylation. Current Opinion in Genetics & Development, 8:21-27, 1998. 52.Marshall CJ. Specificity of Receptor Tyrosine Kinase Signaling: Transient Versus Sustained Extracellular Signal-regulated Kinase Activation. Cell, 80: 179, 1995. 53.Cook1 SJ, Balmanno K, Garner A, Millar T, Taverner C and Todd D. Regulation of cell cycle re-entry by growth, survival and stress signalling pathways. Biochemical Society Transactions Volume 28, part 2, 2000. 54.Kyriakis JM. Making the connection: coupling of stress-activated ERK/MAPK (extracellular-signal-regulated kinase/mitogen-activated protein kinase) core signalling modules to extracellular stimuli and biological responses. Biochemical Society Symposia, 64: 29-48, 1999. 55.Davis RJ. Signal transduction by the c-Jun N-terminal kinase. Biochemical Society Symposia, 64: 1-12, 1999. 56.Ip YT and Davis RJ. Signal transduction by the c-Jun N-terminal kinase (JNK)--from inflammation to development. Current Opinion in Cell Biology, 10: 205-219, 1999. 57.Xia Z, Dickens M, Raingeaud J, Davis RJ, and Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270: 1326-1331, 1995. 58.Zanke BW, Boudreau K, Rubie E, Winnett E, Tibbles LA, Zon L, Kyriakis J, Liu FF, and Woodgett JR. The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Current Biology, 6: 606-13, 1996. 59.Nishina H, Vaz C, Billia P, Nghiem M, Sasaki T, Furlonger K, Paige C, Hui C, Fischer KD, Kishimoto H, Iwatsubo T, Katada T, Woodgett JR, and Penninger JM. Defective liver formation and liver cell apoptosis in mice lacking the stress signaling kinase SEK1/MKK4. Development — Supplement, 126: 505-516, 1999. 60.Molnar A, Theodoras AM, Zon LI, Kyriakis JM. Cdc42, but not Rac1, inhibits serum-stimulated cell cycle progression at G1/S through a mechanism requiring p38/RK. Journal of Biological Chemistry, 272: 13229-35, 1997. 61.Ellinger-Ziegelbauer H, Kelly K, and Siebenlist U. Cell cycle arrest and reversion of Ras-induced transformation by a conditionally activated form of mitogen-activated protein kinase kinase kinase 3. Molecular & Cellular Biology, 19: 3857-68, 1999. 62.Lavoie JN, L'Allemain G, Brunet A, Muller R, and Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. Journal of Biological Chemistry, 271: 20608-16, 1996. 63.Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell, 80: 179-85, 1995. 64.Lloyd AC. Ras versus cyclin-dependent kinase inhibitors. Current Opinion in Genetics & Development, 8: 43-48, 1998. 65 Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, and Lowe SW. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes & Development, 12: 3008-3019, 1998. 66.Serrano M, Lin AW, McCurrach ME, Beach D, and Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88: 593-602, 1997. 67.Athena W, Marta Barradas, James C, Linda van Aelst, Manuel Serrano, and Scott W. Lower Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes & Development, 12: 3008-3019, 1998. 68.Martin-Castellanos C. and Moreno S. Recent advances on cyclins, cdks and cdk inhibitors. Trends in Cell Biology, 7: 95—98, 1997. 69.Morgan DO. Principles of cdk regulation. Nature, 374: 131—134, 1995. 70.Matsushime H, Quelle DE, Shurtleff SA, Shibuya M, Sherr CJ, and Kato JY. D-type cyclin-dependent kinase activity in mammalian cells. Mol. Cell. Biol, 14: 2066—2076, 1994. 71.Sherr, CJ. Mammalian G1 cyclins. Cell, 73: 1059—1065, 1993. 72.Sherr, CJ. Cancer cell cycles. Science, 274: 1672—1652, 1996. 73.Resnitzky D and Reed SI. Different roles for cyclins D1 and E in regulation of the G1-to-S transition. Molecular & Cellular Biology, 15: 3463—3469, 1995. 74.Tetsu O. and McCormick F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398: 422-6, 1999. 75.Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, Waterfield MD, and Downward J. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature, 370: 527-32, 1994. 76.Sherr CJ and Roberts JM. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes & Development, 9: 1149-63, 1995. 77.Harper JW and Elledge SJ. Cdk inhibitors in development and cancer. Current Opinion in Genetics & Development. 6: 56-64, 1996. 78.Lukas J, Parry D, Aagaard L, Mann DJ, Bartkova J, Strauss M, Peters G, and Bartek J. Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16. Nature, 375: 503-6, 1995. 79.Koh J, Enders GH, Dynlacht BD, and Harlow E. Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature, 375: 506-10, 1995. 80.Sheaff RJ, Groudine M, Gordon M, Roberts JM, and Clurman BE. Cyclin E-CDK2 is a regulator of p27Kip1. Genes & Development, 11: 1464-78, 1997. 81.Macleod KF, Sherry N, Hannon G, Beach D, Tokino T, Kinzler K, Vogelstein B, and Jacks T. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes & Development, 9: 935-944, 1995. 82. Levine AJ. p53, the cellular gatekeeper for growth and division, Cell, 88: 323—331, 1997. 83.Prives C. Signaling to p53: breaking the MDM2— p53 circuit. Cell, 95 5—8, 1998. 84.Shieh SY, Ikeda M, Taya Y, and Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2, Cell, 91: 325—334, 1997. 85. Unger T, Juven-Gershon T, Moallem E, Berger M, Vogt Sionov R, Lozano G, Oren M, and Haupt Y. Critical role for Ser 20 of human p53 in the negative regulation of p53 by MDM2, European Molecular Biology Organization Journal, 18: 1805—1814, 1999. 86.Wu L and Levine AJ. Differential regulation of the p21rWAF-1 and MDM2 genes after high-dose UV irradiation: p53-dependent and p53-independent regulation of the MDM2 gene, Molecular Medicine, 3: 441—451, 1997 87.Reinke V. and Lozano G. The p53 targets MDM2 and Fas are not required as mediators of apoptosis in vivo. Oncogene, 15: 1527—1534, 1997. 88.Thomas A. and White E. Suppression of the p300-dependent MDM2 negative-feedback loop induces the p53 apoptotic function, Genes & Development, 12: 1975—1985, 1998 89.Lu H, Fisher RP, Bailey P, and Levine AJ. The CDK7-cycH- p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Molecular & Cellular Biology, 17: 5923—5934, 1997 90.Sterner, DE, and Berger, SL. Acetylation of histones and transcription-related factors. Microbiology & Molecular Biology Reviews, 64: 435—459, 2000. 91.Liu L, Scolnick, DM, Trievel, RC, Zhang, HB, Marmorstein R, Halazonetis TD, and Berger SL. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Molecular & Cellular Biology, 19, 1202—1209, 1999. 92. Nickolai A. Barlev, Lin Liu, Nabil H, Chehab, Kyle Mansfield, Kimberly G, Harris Thanos D, Halazonetis, Shelley L, and Berger. Acetylation of p53 Activates Transcription through Recruitment of Coactivators/Histone Acetyltransferases. Molecular Cell, 8: 1243—1254, 2000. 93. Masaaki Nomura, Akira Kaji, Wei-ya Ma, Ken-ichi Miyamoto, Zigang Dong. Suppression of cell transformation and induction of apoptosis by caffeic acid phenethyl ester. Molecular carcinogenesis, 31: 83—89, 2001. 94. Fuchs SY, Adler V, Pincus MR, and Ronai Z. MEKK1/JNK signaling stabilizes and activates p53. Proceedings of the National Academy of Sciences of the United States of America, 95: 10541-6, 1998. 95. Fuchs SY, Adler V, Buschmann T, Yin Z, Wu X, Jones SN, and Ronai Z. JNK targets p53 ubiquitination and degradation in nonstressed cells. Genes & Development, 12: 2658-63, 1998. 96. Huang C, Ma WY, Maxiner A, Sun Y, and Dong Z. p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. Journal of Biological Chemistry, 274: 12229-35, 1999. 97. Keller D, Zeng X, Li X, Kapoor M, Iordanov MS, Taya Y, Lozano G, Magun B, and Lu H. The p38MAPK inhibitor SB203580 alleviates ultraviolet-induced phosphorylation at serine 389 but not serine 15 and activation of p53. Biochemical & Biophysical Research Communications, 261: 464-471, 1999. 98. Qing-Bai She, Nanyue Chen, and Zigang Dong. ERKs and p38 Kinase Phosphorylate p53 Protein at Serine 15 in Response to UV Radiation. Journal of Biological Chemistry, 275: 20444-20449, 2000. 99. Milne DG, Campbell FB, Caudwell, and Meek DW. Phosphorylation of the tumor suppressor protein p53 by mitogen- activated protein kinases. Journal of Biological Chemistry, 269: 9253-9260, 1994. 100. Ko LJ and Prives C. p53: puzzle and paradigm. Genes & Development, 10: 1054-72, 1996. 101. Diane L, Persons, Eugenia M, Yazlovitskaya, and Jill CP. Effect of Extracellular Signal-regulated Kinase on p53 Accumulation in Response to Cisplatin. Journal of Biological Chemistry, 275: 35778-35785, 2000. 102. Shih A, Davis FB, Lin HY, and Davis PJ. Resveratrol induces apoptosis in thyroid cancer cell lines via a MAPK- and p53-dependent mechanism. Journal of Clinical Endocrinology & Metabolism, 87: 1223-32, 2002. 103. Xia Z, Dickens M, Raingeaud J, Davis RJ, and Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270: 1326-31, 1995. 104. Robinson, Megan J, Cobb, and Melanie H. Mitogen-activated protein kinase pathways. Current Opinion in Cell Biology. 9: 180-186, 1997. 105. Hans JS and Michael JW. Mitogen-Activated Protein Kinases: Specific Messages from Ubiquitous Messengers. Molecular & Cellular Biology, 19: 2435-2444, 1999. 106. Lufen Chang and Michael Karin. Mammalian MAP kinase signalling cascades. Nature, 410: 37 — 40, 2001. 107. Timmer T, de Vries EG, and de Jong S. Fas receptor-mediated apoptosis: a clinical application? Journal of Pathology, 196: 125-34, 2002 . 108. Frei K, Ambar B, Adachi N, Yonekawa Y, and Fontana A. Ex vivo malignant glioma cells are sensitive to Fas (CD95/APO-1) ligand-mediated apoptosis. Journal of Neuroimmunology, 87: 105-13, 1998.
|