跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/28 08:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李沅賸
研究生(外文):Yuan-Sheng Li
論文名稱:應用脂肪間葉幹細胞治療糖尿病之研究
論文名稱(外文):Study of Adipose-Derived Mesenchymal Stem Cells in Diabetic Therapy
指導教授:邱紫文邱紫文引用關係
指導教授(外文):Tzyy-Wen Chiou
學位類別:博士
校院名稱:國立東華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
論文頁數:84
中文關鍵詞:脂肪幹細胞糖尿病胰島素分泌細胞脂聯素鏈佐黴素菸鹼醯胺
外文關鍵詞:adipose-derived stem cellsdiabetes mellitusinsulin-producing celladiponectinstreptozotocinnicotinamide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
糖尿病長年佔據國人十大死因之前五名,幹細胞療法是目前治癒糖尿病具前景的方式之一,然而目前細胞治療糖尿病之臨床試驗效果仍有限。脂肪間質幹細胞具有安全容易取得、可體外放大培養、多能性分化能力和分泌多種細胞激素之優勢,是糖尿病細胞療法的理想來源之一。故本研究以脂肪間質幹細胞為題材,探討其應用於治療糖尿病之可行性。本研究分為三部分:第一,改良產婦腹部塊狀脂肪組織間質幹細胞體外的分離與培養方法,並研究此來源的脂肪間質幹細胞相關特性。第二,於體外人類脂肪間質幹細胞培養出可以產生胰島素的細胞,並以動物模式證明它們是具有治療糖尿病潛力的細胞。實驗結果顯示將脂肪幹細胞移植入以鏈佐黴素與菸鹼醯胺所誘導的糖尿病小鼠體內後,分別都兩劑的中劑量 (4×107 cells/kg) 與高劑量 (8×107 cells/kg) 組別,採間隔兩週靜脈注射為安全且具有較佳療效,並於誘導之糖尿病小鼠體內可顯著降低血糖值,也由免疫組織化學染色法發現表現人類專一性粒線體和胰島素製造細胞可存活在小鼠胰臟內並分化成胰島素分泌細胞。第三,近期文獻發現棕色脂肪細胞具有調控糖代謝的功能,其脂聯素表現也高於白色脂肪細胞,而脂聯素受體又與糖尿病阻抗性相關;本研究篩選可以增加脂聯素基因表現的小分子化合物,發現增加脂聯素表現藥物可以增加類棕色脂肪相關基因的表現,並探討脂肪幹細胞脂聯素的基因表現對治療糖尿病小鼠降血糖療效之影響。本研究結果提供之資訊可作為未來開發幹細胞治療糖尿病患者的臨床應用之基礎。
Diabetes has been one of the top five causes of death in Taiwan for many years. Stem cells provide a promising expectancy for diabetes treatment; however, the efficacy in clinical trial still presents room to improve. Mesenchymal stem cells can be obtained safely and easily from fat tissue, be expanded in vitro with multipotent differentiation ability, and secrete a variety of cytokines. It is therefore that human adipose-derived stem cells (hADSCs) were selected to explore their application for diabetes therapy in this study. In the first part of this study, we aimed to develop a simple method to process adult stem cells from human adipose tissue harvested from the subcutaneous fat of the abdominal wall during gynecologic surgery, and to investigate the characteristics of these cells. In the second part, we examined the efficacy of transplanting hADSCs in diabetic mice. We observed that the middle dosage (4×107 cells/kg) and high dosage of hADSCs (8×107 cells/kg) administered through the tail vein of the diabetic mice would reduce their fasting blood glucose levels. The infiltration of immune cells into pancreatic tissues was reduced and the damage of the islet cells was ameliorated in the hADSC-transplanted mice compared with those of the control group. In addition, pancreatic function was recovered significantly according to biochemical analyses of insulin and glycated hemoglobin levels. Human-specific mitochondria and insulin were observed in pancreatic tissues, indicating that hADSCs differentiated into insulin-producing cells in vivo. Because the expression level of adiponection in brown or white fat cells are relevant to the regulation of glucose metabolism and adiponectin receptors are related to insulin resistance, small molecule compounds that may induce adiponectin gene expression in hADSCs were screened in the last part of this study. The effect of these small molecules on the expression of brown fat-related genes and the reduction on the hyperglycemia in the diabetic mice were examined. The information provided by this research may shed light on the development of future diabetes clinical treatment practice.
一、前言 1
二、研究背景 3
1. 糖尿病介紹 3
2. 幹細胞在糖尿病治療的應用現況 4
3. 脂聯素之相關研究 6
4. 脂肪幹細胞體外分化成類棕色脂肪細胞 9
5. 幹細胞體外分化成胰島素分泌細胞 11
6. 糖尿病動物模式與選擇 13
7. 脂肪來源幹細胞治療糖尿病之臨床試驗 16
三、 材料與方法 19
1. 脂肪間質幹細胞來源 19
2. 脂肪幹細胞鑑定分析 19
3. 幹細胞分化能力分析 20
4. 脂肪間質幹細胞體外分化胰島素分泌細胞 21
5. 反轉錄聚合酶連鎖反應(RT-PCR)與膠體分析 22
6. 體外分化類棕色脂肪細胞 (Brite/Beige cell) 22
7. 双硫腙(Dithizone, DTZ) 染色 23
8.高糖環境影響胰臟相關細胞株的存活 24
9. 西方墨點法 24
10. 免疫細胞螢光染色 25
11. 實驗動物照護與飼養 25
12. 以STZ-NA 誘導非肥胖型糖尿病動物模型 25
13. 細胞移植治療 26
14. 實驗動物採血、血中葡萄糖、膽固醇與三酸甘油酯測定 27
15. 組織處理以及切片 27
16. 蘇木素-伊紅染色 (H&E Stain) 28
17. 免疫化學染色 28
18. 葡萄糖耐受性試驗 29
19. 酵素連結免疫分析法 29
20. 統計分析 29
四、 研究結果 31
1. 剖腹產塊狀脂肪幹細胞分離與培養技術的探討 31
1.1 一般傳統手工的切割法 31
1.2 不同層的塊狀脂肪幹細胞貼附型態觀察 33
1.3 不同層的塊狀脂肪幹細胞生長差異 33
1.4 不同層的塊狀脂肪間質幹細胞的表面抗原分析 34
1.5 不同層的塊狀脂肪間質幹細胞之分化能力測試 36
2. 使用均質機處理脂肪組織的方法 37
2.1比較手工切割與均質機不同條件下對於脂肪檢體SVF量之影響 37
2.2 比較酵素不同處理時間對於脂肪檢體SVF量之影響 37
2.3 均質機程序分離之脂肪間質幹細胞的表面抗原分析 41
2.4 均質機程序分離之脂肪間質幹細胞的細胞生長曲線 42
2.5 均質機程序分離之脂肪間質幹細胞的分化能力 43
3 NA-STZ化學性誘導之糖尿病鼠模式建立 44
3.1脂肪幹細胞移植治療糖尿病小鼠具有改善空腹血糖值之成效 45
3.2 脂肪幹細胞治療降低糖尿病鼠糖化血色素與增加小鼠胰島素分泌 47
3.3 脂肪幹細胞改善糖尿病小鼠的血糖耐受性 48
3.4 脂肪幹細胞改善糖尿病小鼠飲水量與排泄量的生理現象 49
3.5 脂肪幹細胞治療具有修復胰臟組織的功效 50
3.6人類脂肪幹細胞於糖尿病鼠活體內追蹤 51
3.7人類脂肪幹細胞於糖尿病鼠體內之功能性分佈 51
4. 探討體外高糖環境對於脂肪幹細胞之影響 53
4.1 脂肪幹細胞具有較高的脂聯素(adiponectin)基因表現 54
4.2 比較不同脂聯素表現之脂肪幹細胞的硬骨與脂肪分化能力 55
4.3不同脂聯素(adiponectin)表現之脂肪幹細胞類胰島細胞的分化能力 57
4.4探討不同化合物對脂肪幹細胞進行類棕色脂肪細胞分化之影響 58
4.5 以藥物TW01預處理後會增加脂肪幹細胞脂聯素表現 60
4.6 以藥物預處理後的脂肪幹細胞應用於小量糖尿病鼠實驗結果 61
五、討論 63
六、結論 71
七、未來展望 73
八、參考文獻 75


Ackermann AM, Gannon M (2007) Molecular regulation of pancreatic beta-cell mass development, maintenance, and expansion. Journal of molecular endocrinology 38:193-206.
Acosta L, Hmadcha A, Escacena N, Perez-Camacho I, de la Cuesta A, Ruiz-Salmeron R, Gauthier BR, Soria B (2013) Adipose mesenchymal stromal cells isolated from type 2 diabetic patients display reduced fibrinolytic activity. Diabetes 62:4266-4269.
Adachi M, Brenner DA (2008) High molecular weight adiponectin inhibits proliferation of hepatic stellate cells via activation of adenosine monophosphate-activated protein kinase. Hepatology (Baltimore, Md) 47:677-685.
Ahima RS, Osei SY (2008) Adipokines in obesity. Frontiers of hormone research 36:182-197.
Algire C, Medrikova D, Herzig S (2013) White and brown adipose stem cells: from signaling to clinical implications. Biochimica et biophysica acta 1831:896-904.
Arai Y, Takayama M, Abe Y, Hirose N (2011) Adipokines and aging. Journal of atherosclerosis and thrombosis 18:545-550.
Bassi EJ, Moraes-Vieira PM, Moreira-Sa CS, Almeida DC, Vieira LM, Cunha CS, Hiyane MI, Basso AS, Pacheco-Silva A, Camara NO (2012) Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes. Diabetes 61:2534-2545.
Berezin AE (2014) Diabetes mellitus and cellular replacement therapy: Expected clinical potential and perspectives. World journal of diabetes 5:777-786.
Bhansali A, Asokumar P, Walia R, Bhansali S, Gupta V, Jain A, Sachdeva N, Sharma RR, Marwaha N, Khandelwal N (2014) Efficacy and safety of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus: a randomized placebo-controlled study. Cell transplantation 23:1075-1085.
Chandra V, Swetha G, Muthyala S, Jaiswal AK, Bellare JR, Nair PD, Bhonde RR (2011) Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PloS one 6:e20615.
Chang J, Li Y, Huang Y, Lam KS, Hoo RL, Wong WT, Cheng KK, Wang Y, Vanhoutte PM, Xu A (2010) Adiponectin prevents diabetic premature senescence of endothelial progenitor cells and promotes endothelial repair by suppressing the p38 MAP kinase/p16INK4A signaling pathway. Diabetes 59:2949-2959.
Cheng KK, Lam KS, Wang B, Xu A (2014) Signaling mechanisms underlying the insulin-sensitizing effects of adiponectin. Best practice & research Clinical endocrinology & metabolism 28:3-13.
Chetboun M, Abitbol G, Rozenberg K, Rozenfeld H, Deutsch A, Sampson SR, Rosenzweig T (2012) Maintenance of redox state and pancreatic beta-cell function: role of leptin and adiponectin. Journal of cellular biochemistry 113:1966-1976.
Chinetti G, Zawadski C, Fruchart JC, Staels B (2004) Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARalpha, PPARgamma, and LXR. Biochemical and biophysical research communications 314:151-158.
Combs TP, Marliss EB (2014) Adiponectin signaling in the liver. Reviews in endocrine & metabolic disorders 15:137-147.
Cramer C, Freisinger E, Jones RK, Slakey DP, Dupin CL, Newsome ER, Alt EU, Izadpanah R (2010) Persistent high glucose concentrations alter the regenerative potential of mesenchymal stem cells. Stem Cells Dev 19:1875-1884.
Ezquer F, Ezquer M, Simon V, Pardo F, Yanez A, Carpio D, Conget P (2009) Endovenous administration of bone-marrow-derived multipotent mesenchymal stromal cells prevents renal failure in diabetic mice. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation 15:1354-1365.
Fang Y, Tian X, Bai S, Fan J, Hou W, Tong H, Li D (2012) Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. International journal of molecular medicine 30:85-92.
Fantuzzi G (2005) Adipose tissue, adipokines, and inflammation. The Journal of allergy and clinical immunology 115:911-919; quiz 920.
Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJ (2008) Three-dimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue engineering Part A 14:127-133.
Fotino C, Ricordi C, Lauriola V, Alejandro R, Pileggi A (2010) Bone marrow-derived stem cell transplantation for the treatment of insulin-dependent diabetes. The review of diabetic studies : RDS 7:144-157.
Gao W, Qiao X, Ma S, Cui L (2011) Adipose-derived stem cells accelerate neovascularization in ischaemic diabetic skin flap via expression of hypoxia-inducible factor-1alpha. Journal of cellular and molecular medicine 15:2575-2585.
Garcia MM, Fandel TM, Lin G, Shindel AW, Banie L, Lin CS, Lue TF (2010) Treatment of erectile dysfunction in the obese type 2 diabetic ZDF rat with adipose tissue-derived stem cells. The journal of sexual medicine 7:89-98.
Glass CE, Singal PK, Singla DK (2010) Stem cells in the diabetic infarcted heart. Heart failure reviews 15:581-588.
Hansen WA, Christie MR, Kahn R, Norgaard A, Abel I, Petersen AM, Jorgensen DW, Baekkeskov S, Nielsen JH, Lernmark A, et al. (1989) Supravital dithizone staining in the isolation of human and rat pancreatic islets. Diabetes research (Edinburgh, Scotland) 10:53-57.
Hao H, Liu J, Shen J, Zhao Y, Liu H, Hou Q, Tong C, Ti D, Dong L, Cheng Y, Mu Y, Fu X, Han W (2013) Multiple intravenous infusions of bone marrow mesenchymal stem cells reverse hyperglycemia in experimental type 2 diabetes rats. Biochemical and biophysical research communications 436:418-423.
Ho JH, Tseng TC, Ma WH, Ong WK, Chen YF, Chen MH, Lin MW, Hong CY, Lee OK (2012) Multiple intravenous transplantations of mesenchymal stem cells effectively restore long-term blood glucose homeostasis by hepatic engraftment and beta-cell differentiation in streptozocin-induced diabetic mice. Cell transplantation 21:997-1009.
Hoch M, Eberle AN, Wagner U, Bussmann C, Peters T, Peterli R (2007) Expression and localization of melanocortin-1 receptor in human adipose tissues of severely obese patients. Obesity (Silver Spring, Md) 15:40-49.
Horvath K, Koch K, Jeitler K, Matyas E, Bender R, Bastian H, Lange S, Siebenhofer A (2010) Effects of treatment in women with gestational diabetes mellitus: systematic review and meta-analysis. BMJ (Clinical research ed) 340:c1395.
Hosick PA, Stec DE (2012) Heme oxygenase, a novel target for the treatment of hypertension and obesity? American journal of physiology Regulatory, integrative and comparative physiology 302:R207-214.
Hotta K et al. (2000) Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arteriosclerosis, thrombosis, and vascular biology 20:1595-1599.
Hung CM, Calejman CM, Sanchez-Gurmaches J, Li H, Clish CB, Hettmer S, Wagers AJ, Guertin DA (2014) Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell reports 8:256-271.
Hung HY, Qian K, Morris-Natschke SL, Hsu CS, Lee KH (2012) Recent discovery of plant-derived anti-diabetic natural products. Natural product reports 29:580-606.
Inoue H, Murakami T, Ajiki T, Hara M, Hoshino Y, Kobayashi E (2008) Bioimaging assessment and effect of skin wound healing using bone-marrow-derived mesenchymal stromal cells with the artificial dermis in diabetic rats. Journal of biomedical optics 13:064036.
Iwabu M et al. (2010) Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464:1313-1319.
Jiang R, Han Z, Zhuo G, Qu X, Li X, Wang X, Shao Y, Yang S, Han ZC (2011) Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study. Frontiers of medicine 5:94-100.
Jun HS, Dao LT, Pyun JC, Cho S (2013) Effect of cell senescence on the impedance measurement of adipose tissue-derived stem cells. Enzyme and microbial technology 53:302-306.
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. The Journal of clinical investigation 116:1784-1792.
Kajiyama H, Hamazaki TS, Tokuhara M, Masui S, Okabayashi K, Ohnuma K, Yabe S, Yasuda K, Ishiura S, Okochi H, Asashima M (2010) Pdx1-transfected adipose tissue-derived stem cells differentiate into insulin-producing cells in vivo and reduce hyperglycemia in diabetic mice. The International journal of developmental biology 54:699-705.
Kang BJ, Ryu HH, Park SS, Koyama Y, Kikuchi M, Woo HM, Kim WH, Kweon OK (2012) Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissues, bone marrow, umbilical cord blood, and Wharton's jelly for treating bone defects. Journal of veterinary science 13:299-310.
Kang HM, Kim J, Park S, Kim H, Kim KS, Lee EJ, Seo SI, Kang SG, Lee JE, Lim H (2009) Insulin-secreting cells from human eyelid-derived stem cells alleviate type I diabetes in immunocompetent mice. Stem Cells 27:1999-2008.
Karasawa H, Nagata-Goto S, Takaishi K, Kumagae Y (2009) A novel model of type 2 diabetes mellitus based on obesity induced by high-fat diet in BDF1 mice. Metabolism: clinical and experimental 58:296-303.
Kim BJ, Jin HK, Bae JS (2011) Bone marrow-derived mesenchymal stem cells improve the functioning of neurotrophic factors in a mouse model of diabetic neuropathy. Laboratory animal research 27:171-176.
Kim HK, Kim YJ, Kim JT, Kwon CH, Kim YK, Bae YC, Kim DH, Jung JS (2008) Alterations in the proangiogenic functions of adipose tissue-derived stromal cells isolated from diabetic rats. Stem cells and development 17:669-680.
Kim JY, Choi EY, Mun HS, Min PK, Yoon YW, Lee BK, Hong BK, Rim SJ, Kwon HM (2013) Usefulness of metabolic syndrome score in the prediction of angiographic coronary artery disease severity according to the presence of diabetes mellitus: relation with inflammatory markers and adipokines. Cardiovascular diabetology 12:140.
Koppen A, Kalkhoven E (2010) Brown vs white adipocytes: the PPARgamma coregulator story. FEBS letters 584:3250-3259.
Liang L, Song Y, Li L, Li D, Qin M, Zhao J, Xie C, Sun D, Liu Y, Jiao T, Liu N, Zou G (2014) Adipose-derived stem cells combined with inorganic bovine bone in calvarial bone healing in rats with type 2 diabetes. Journal of periodontology 85:601-609.
Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P, Virtanen KA, Beuschlein F, Persson A, Borga M, Enerback S (2013) Evidence for two types of brown adipose tissue in humans. Nature medicine 19:631-634.
Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science (New York, NY) 210:908-910.
Lin G, Wang G, Liu G, Yang LJ, Chang LJ, Lue TF, Lin CS (2009) Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1. Stem cells and development 18:1399-1406.
Lin YY, Chen CY, Lin Y, Chiu YP, Chen CC, Liu BH, Mersmann HJ, Wu SC, Ding ST (2013) Modulation of glucose and lipid metabolism by porcine adiponectin receptor 1-transgenic mesenchymal stromal cells in diet-induced obese mice. Cytotherapy 15:971-978.
Ma L, Hellstrom WJ (2011) Words of Wisdom. Re: treatment of erectile dysfunction in the obese type 2 diabetic ZDF rat with adipose tissue-derived stem cells. European urology 59:168-169.
Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, Fang Q, Christ-Roberts CY, Hong JY, Kim RY, Liu F, Dong LQ (2006) APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nature cell biology 8:516-523.
Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, Novelli M, Ribes G (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47:224-229.
Meazza C, Vitale G, Pagani S, Castaldi D, Ogliari G, Mari D, Laarej K, Tinelli C, Bozzola M (2011) Common adipokine features of neonates and centenarians. Journal of pediatric endocrinology & metabolism : JPEM 24:953-957.
Mohamad Buang ML, Seng HK, Chung LH, Saim AB, Idrus RB (2012) In vitro generation of functional insulin-producing cells from lipoaspirated human adipose tissue-derived stem cells. Archives of medical research 43:83-88.
Monickaraj F, Aravind S, Nandhini P, Prabu P, Sathishkumar C, Mohan V, Balasubramanyam M (2013) Accelerated fat cell aging links oxidative stress and insulin resistance in adipocytes. Journal of biosciences 38:113-122.
Mossalam M, Jeong JH, Abel ED, Kim SW, Kim YH (2008) Reversal of oxidative stress in endothelial cells by controlled release of adiponectin. Journal of controlled release : official journal of the Controlled Release Society 130:234-237.
Murtaugh LC (2007) Pancreas and beta-cell development: from the actual to the possible. Development (Cambridge, England) 134:427-438.
Nguyen A, Guo J, Banyard DA, Fadavi D, Toranto JD, Wirth GA, Paydar KZ, Evans GR, Widgerow AD (2016) Stromal vascular fraction: A regenerative reality? Part 1: Current concepts and review of the literature. Journal of plastic, reconstructive & aesthetic surgery : JPRAS 69:170-179.
Novelli M, Bonamassa B, Masini M, Funel N, Canistro D, De Tata V, Martano M, Soleti A, Campani D, Paolini M, Masiello P (2010) Persistent correction of hyperglycemia in streptozotocin-nicotinamide-induced diabetic mice by a non-conventional radical scavenger. Naunyn-Schmiedeberg's archives of pharmacology 382:127-137.
Olsen JM, Sato M, Dallner OS, Sandstrom AL, Pisani DF, Chambard JC, Amri EZ, Hutchinson DS, Bengtsson T (2014) Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation. J Cell Biol 207:365-374.
Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A, Xiang AH, Utzschneider KM, Kahn SE, Olefsky JM, Buchanan TA, Scherer PE (2004) Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. The Journal of biological chemistry 279:12152-12162.
Peng Y, Huang S, Cheng B, Nie X, Enhe J, Feng C, Fu X (2013) Mesenchymal stem cells: a revolution in therapeutic strategies of age-related diseases. Ageing research reviews 12:103-115.
Perrini S, Cignarelli A, Ficarella R, Laviola L, Giorgino F (2009) Human adipose tissue precursor cells: a new factor linking regulation of fat mass to obesity and type 2 diabetes? Archives of physiology and biochemistry 115:218-226.
Pisani DF, Djedaini M, Beranger GE, Elabd C, Scheideler M, Ailhaud G, Amri EZ (2011) Differentiation of Human Adipose-Derived Stem Cells into "Brite" (Brown-in-White) Adipocytes. Frontiers in endocrinology 2:87.
Qian SW, Tang Y, Li X, Liu Y, Zhang YY, Huang HY, Xue RD, Yu HY, Guo L, Gao HD, Liu Y, Sun X, Li YM, Jia WP, Tang QQ (2013) BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America 110:E798-807.
Raballo M, Trevisan M, Trinetta AF, Charrier L, Cavallo F, Porta M, Trento M (2012) A study of patients' perceptions of diabetes care delivery and diabetes: propositional analysis in people with type 1 and 2 diabetes managed by group or usual care. Diabetes care 35:242-247.
Roman S, Agil A, Peran M, Alvaro-Galue E, Ruiz-Ojeda FJ, Fernandez-Vazquez G, Marchal JA (2015) Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders. Translational research : the journal of laboratory and clinical medicine 165:464-479.
Ruan H, Dong LQ (2016) Adiponectin signaling and function in insulin target tissues. Journal of molecular cell biology 8:101-109.
Ruster C, Wolf G (2013) Adipokines promote chronic kidney disease. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association 28 Suppl 4:iv8-14.
Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S, Robey PG, Riminucci M, Bianco P (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324-336.
Saki N, Jalalifar MA, Soleimani M, Hajizamani S, Rahim F (2013) Adverse effect of high glucose concentration on stem cell therapy. International journal of hematology-oncology and stem cell research 7:34-40.
Sanz-Baro R, Garcia-Arranz M, Guadalajara H, de la Quintana P, Herreros MD, Garcia-Olmo D (2015) First-in-Human Case Study: Pregnancy in Women With Crohn's Perianal Fistula Treated With Adipose-Derived Stem Cells: A Safety Study. Stem cells translational medicine 4:598-602.
Satoh H, Kishi K, Tanaka T, Kubota Y, Nakajima T, Akasaka Y, Ishii T (2004) Transplanted mesenchymal stem cells are effective for skin regeneration in acute cutaneous wounds. Cell transplantation 13:405-412.
Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgadze N, Tchkonia T, Schrier D, Falb D, Kirkland JL, Wagers AJ, Tseng YH (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proceedings of the National Academy of Sciences of the United States of America 108:143-148.
Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM (2007) Transcriptional control of brown fat determination by PRDM16. Cell metabolism 6:38-54.
Smith MM, Minson CT (2012) Obesity and adipokines: effects on sympathetic overactivity. The Journal of physiology 590:1787-1801.
Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. The Indian journal of medical research 125:451-472.
Stein SA, Lamos EM, Davis SN (2013) A review of the efficacy and safety of oral antidiabetic drugs. Expert opinion on drug safety 12:153-175.
Tahara A, Matsuyama-Yokono A, Shibasaki M (2011) Effects of antidiabetic drugs in high-fat diet and streptozotocin-nicotinamide-induced type 2 diabetic mice. European journal of pharmacology 655:108-116.
Tanabe H et al. (2015) Crystal structures of the human adiponectin receptors. Nature 520:312-316.
Tezza S, Ben Nasr M, Vergani A, Valderrama Vasquez A, Maestroni A, Abdi R, Secchi A, Fiorina P (2015) Novel immunological strategies for islet transplantation. Pharmacological research 98:69-75.
Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000-1004.
Van de Voorde J, Pauwels B, Boydens C, Decaluwe K (2013) Adipocytokines in relation to cardiovascular disease. Metabolism: clinical and experimental 62:1513-1521.
van Stijn CM, Kim J, Lusis AJ, Barish GD, Tangirala RK (2015) Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 29:636-649.
Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, Hara K, Hada Y, Vasseur F, Froguel P, Kimura S, Nagai R, Kadowaki T (2003) Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. The Journal of biological chemistry 278:40352-40363.
Wang CH, Wang CC, Huang HC, Wei YH (2013) Mitochondrial dysfunction leads to impairment of insulin sensitivity and adiponectin secretion in adipocytes. The FEBS journal 280:1039-1050.
Wang GX, Zhao XY, Meng ZX, Kern M, Dietrich A, Chen Z, Cozacov Z, Zhou D, Okunade AL, Su X, Li S, Bluher M, Lin JD (2014) The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis. Nature medicine 20:1436-1443.
Williams SK, Touroo JS, Church KH, Hoying JB (2013) Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system. BioResearch open access 2:448-454.
Wilson ME, Scheel D, German MS (2003) Gene expression cascades in pancreatic development. Mechanisms of development 120:65-80.
Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H (2004) Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochemical and biophysical research communications 323:630-635.
Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366-376.
Wulster-Radcliffe MC, Ajuwon KM, Wang J, Christian JA, Spurlock ME (2004) Adiponectin differentially regulates cytokines in porcine macrophages. Biochemical and biophysical research communications 316:924-929.
Yamamoto K, Sakaguchi M, Medina RJ, Niida A, Sakaguchi Y, Miyazaki M, Kataoka K, Huh NH (2010) Transcriptional regulation of a brown adipocyte-specific gene, UCP1, by KLF11 and KLF15. Biochemical and biophysical research communications 400:175-180.
Yamauchi T et al. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762-769.
Yamauchi T et al. (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature medicine 13:332-339.
Yan B, Abdelli LS, Singla DK (2011) Transplanted induced pluripotent stem cells improve cardiac function and induce neovascularization in the infarcted hearts of db/db mice. Molecular pharmaceutics 8:1602-1610.
Yang SF, Xue WJ, Duan YF, Xie LY, Lu WH, Zheng J, Yin AP (2015) Nicotinamide Facilitates Mesenchymal Stem Cell Differentiation Into Insulin-Producing Cells and Homing to Pancreas in Diabetic Mice. Transplantation proceedings 47:2041-2049.
Yang Z, Li K, Yan X, Dong F, Zhao C (2010) Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie 248:1415-1422.
Yu J, Gu Y, Du KT, Mihardja S, Sievers RE, Lee RJ (2009) The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30:751-756.
Zeng H, Li L, Chen JX (2012) Overexpression of angiopoietin-1 increases CD133+/c-kit+ cells and reduces myocardial apoptosis in db/db mouse infarcted hearts. PLoS One 7:e35905.
Zhang Y, Ye C, Wang G, Gao Y, Tan K, Zhuo Z, Liu Z, Xia H, Yang D, Li P (2013) Kidney-targeted transplantation of mesenchymal stem cells by ultrasound-targeted microbubble destruction promotes kidney repair in diabetic nephropathy rats. BioMed research international 2013:526367.
Zhao Y, Jiang Z, Zhao T, Ye M, Hu C, Zhou H, Yin Z, Chen Y, Zhang Y, Wang S, Shen J, Thaker H, Jain S, Li Y, Diao Y, Chen Y, Sun X, Fisk MB, Li H (2013) Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: phase I/II clinical trial. BMC medicine 11:160.
Zografou A, Papadopoulos O, Tsigris C, Kavantzas N, Michalopoulos E, Chatzistamatiou T, Papassavas A, Stavropoulou-Gioka C, Dontas I, Perrea D (2013) Autologous transplantation of adipose-derived stem cells enhances skin graft survival and wound healing in diabetic rats. Annals of plastic surgery 71:225-232.
Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell 13:4279-4295.
孫立易,人類間質幹細胞之體外增生與分化探討,2010,國立交通大學生物科技學系,博士論文。
黃琬婷,以 STZ-NA 誘發糖尿病小鼠模型探討人類脂肪間質幹細胞於第二型糖尿病治療之應用,2014,國立東華大學生物技術研究所,碩士論文。
刘维全、朱宝利、潘洪彬、王聪、王静、赵素梅、高士争、黄英,一种肌内脂肪沉积Adiponectin基因,2012,中國大陸發明專利第 CN102634520 A 號。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊