跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉彥宏
研究生(外文):Yen-Hung Liu
論文名稱:以穿透式電子顯微術研究生長於矽基板上之氮化銦鎵/氮化鎵量子井結構
論文名稱(外文):Study on InGaN/GaN Quantum Well Structures on Si Substrate with Transmission Electron Microscopy
指導教授:楊志忠楊志忠引用關係
指導教授(外文):Chih-Chung Yang
口試委員:彭隆瀚黃建璋吳育任
口試日期:2012-07-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:73
中文關鍵詞:氮化銦鎵/氮化鎵 量子井矽基板穿透式電子顯微鏡應變狀態分析差排
外文關鍵詞:InGaN/GaN quantum wellSilicon substrateTransmission Electron MicroscopyStrain State AnalysisDislocations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
熱膨脹係數的不同讓在矽基板上高溫成長完成之氮化鎵磊晶層在降溫過程中產生很強的伸張應力,使得氮化鎵層龜裂。為解決此問題,我們利用溫度漸變過程成長氮化鋁緩衝層以產生收縮應力來補償上述降溫過程產生的伸張應力,我們發現使用最多變溫成長階段之量子井樣品有最弱的殘留伸長應力、最短的發光波長以及最高的發光內部量子效率。本研究中,我們使用應變分析軟體(SSA)計算矽基板和藍寶石基板上不同變溫生長氮化鋁緩衝層條件下成長之氮化銦鎵/氮化鎵的量子井樣品內銦成分,得到和X光繞射分析相同的變化趨勢。然而使用應變分析軟體得到的銦含量變化幅度較大。再者,我們由穿透式電子顯微術的研究發現,隨著殘留應力下降,樣品內有較低的線性狀差排密度。另外也觀察到在氮化鎵/氮化鋁超晶格結構上方比其下方有較低的線性差排密度,這指出氮化鎵/氮化鋁超晶格結構可以阻擋線性差排往上延伸。

The difference of thermal expansion coefficient between GaN and Si results in a strong tensile stress on the GaN epitaxial layer during the cooling process. In our study, we create a compressive thermal stress by using an AlN buffer layer grown with graded temperatures to compensate the tensile thermal stress. The InGaN/Gan quantum well (QW) sample with the largest number of graded-temperature growth stages has the weakest residual tensile stress, shortest emission wavelength, and highest emission internal quantum efficiency. In this study, the variation trend of indium composition of the QW samples grown on Si and the control sample grown on sapphire based on strain state analysis is shown to be the same as that based on the X-ray diffraction measurement and fitting. However, the variation range becomes larger. Also, from the cross-sectional transmission electron microscopy study, it is found that the threading dislocation (TD) density decreases with decreasing residual stress. The TD density above the GaN/AlN superlattice inter-layer is lower than that below the inter-layer, indicating that the inter-layer can block the TDs.

Chapter 1 Introduction……………………………………..…..1
1.1 Applications of Nitride-Based Materials ……………………..1
1.2 Characteristics of InGaN/GaN Structures……………………….2
1.2.1 Substrate for Nitride Epitaxy……………………………..2
1.2.2 Strain Effect………………………………………………3
1.2.3 Defects in Nitrides………………………………………..4
1.3 Indium Aggregation and Quantum dot-like Structures………….5
1.4 Research Motivations and Thesis Organization……………..….7
Chapter 2 Analysis Methods………………………….……...14
2.1 Specimen Preparation of Cross-Section TEM………………….14
2.2 Material Analysis……………………………………………….18
2.2.1 Transmission Electron Microscopy (TEM)……………...18
2.2.2 Strain-State Analysis (SSA)…………….........................23
2.2.3 X-Ray Diffraction (XRD)………………………………27
2.3 Optical Analysis…………………………………………….......29
2.3.1 Photoluminescence (PL)………………………………...29
Chapter 3 Characterizations of InGaN/GaN Quantum Well Samples on Si Substrate Grown with Temperature-graded AlN buffer…………………………………………………...........41
3.1 Introduction…………………………………………………......41
3.2 Sample Structures and Growth Condition ………......................43
3.3 Characterization Results of InGaN/GaN Quantum Wells…...…44
3.4 Strain State Analysis…….....…………………………………...47
3.5 Threading Dislocation Density………………………...……….50
Chapter 4 Conclusions……………………………………......69
References…………………………………………………….…….70



[1]S. Nakamura and G. Fasol, The Blue Laser Diode, Springer, (1997).
[2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kyoku and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996).
[3]C.A. Paker, J. C. Rolerts, S. M. Bedair, M. J. Reed, S. X. Liu and, N. A. EI-Masry, Appl. Phys. Lett. 75, 2776 (1999)
[4]H. K. Cho, J. Y. Lee, G. M. Yang, and C. S. Kim, Appl. Phys. Lett. 79, 215 (2001).
[5]K. Osamura, Jpn. J. Appl. Phys. 46, 3432 (1975).
[6]I. H. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
[7]N. M. Johnson, A. V. Neurmikko, and S. P. DenBaars, Phys. Today 53, 31 (2001).
[8]T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 37, 1358 (1998).
[9]H. Lahreche, P. Vennegues, O.Tottereau, M. Laugt, P. Lorenzini, M. Leroux, B. Beaumont, and P. Gibart, J. Crystal Growth 217, 13 (2000).
[10] B. Zhang, H. Liang, Y. Wang, Z. Feng, K. W. Ng, and K. M. Lau, J Crystal Growth 298, 725 (2007).
[11]J. W. Lee, Y. Tak, J. Y. Kim, H. G. Hong, S. Chae, B. Min, H. Jeong, J. Yoo, J. R. Kim, and Y. Park, J Crystal Growth 315, 263 (2011).
[12]A. Dadgar, J. Blasing, A. Diez, A. Alam, M. Heuken, and A. Krost, Jpn. J. Appl. Phys. 39, L1183 (2000).
[13]G. Cong, Y. Lu, W. Peng, X. Liu, X. Wang, and Z. Wang, J. Crystal Growth 276, 381 (2005).
[14] E. Feltin, B. Beaumont, M. Laugt, P. Mierry, P. Vennegues, H. Lahreche, M. Leroux, and P. Gibart, Appl. Phys. Lett. 79, 3230 (2001).
[15] A. Dadgar, J. Christen, T. Riemann, S. Richter, J. Bliasing, A. Diez, A. Krost, A. Alam, and M. Heuken, Appl. Phys.Lett. 78, 2211 (2001).
[16]S. H. Jang and C. R. Lee, J. Crystal Growth 253, 64 (2003).
[17]K. L. Lin, E. Y. Chang, Y. L. Hsiao, W. C. Huang, T. Li, D. Tweet, J. S. Maa, S. T. Hsu, and C. T. Lee, Appl. Phys. Lett. 91, 222111 (2007).
[18] S. Raghavan, X. Weng, E. Dickey, and J. M. Redwing, Appl. Phys. Lett. 87, 142101 (2005).
[19] S. Raghavan, X. Weng, E. Dickey, and J. M. Redwing, Appl. Phys. Lett. 88, 041904 (2006).
[20] W. Liu, J. J. Zhu, D. S. Jiang, H. Yang, and J. F. Wang, Appl. Phys. Lett. 90, 011914 (2007).
[21] S. H. Jang, S. J. Lee, I. S. Seo, H. K. Ahn, O. Y. Lee, J. Y. Lee, and C. R. Lee, J. Crystal Growth 241, 289 (2002).
[22] S. H. Jang, S. S. Lee, O. Y. Lee, and C. R. Lee, J. Crystal Growth 255, 220(2003).
[23]S. Raghavan and J. M. Redwing, Jpn. J. Appl. Phys. 98, 023515 (2005).
[24] M. D. Graef, Introduction to Conventional Transmission Electron Microscopy, Cambridge University Press, (2003)
[27] C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, Appl. Phys. Lett. 89, 051913 (2006).
[28] I. H. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).
[29] B. H. Bairamov, O. Gurdal, A. Botchkarev, H. Morkoc, G. Irmer, and J. Monecke, Phys. Rev. B 60, 16741 (1999).
[30] R. Kudrawiec, M. Siekacz, M. Kryśko, G. Cywiński, J. Misiewicz, and C. Skierbiszewski, Jpn. J. Appl. Phys. 106, 113517 (2009).
[31] Y. S. Lin, K. J. Ma, C. Hsu, Y. Y. Chung, C. W. Liu, S. W. Feng, Y. C. Cheng, M. H. Mao, C. C. Yang, H. W. Chuang, C. T. Kuo, J. S. Tsang, and T. E. Weirich, Appl. Phys. Lett. 80, 2571 (2002).
[32] S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, Appl. Phys Lett. 83, 4906 (2003).
[33] A. Sasaki, S. Shibakawa, Y. Kawakami, K. Nishizuka, Y. Narukawa, and T. Mukai, Jpn. J. Appl. Phys. 45, 8719 (2006).
[34] Y. C. Cheng, E. C. Lin, C. M. Wu, C. C. Yang, and J. R. Yang, Appl. Phys. Lett. 84, 2506 (2004).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊