跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 07:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳俞慶
研究生(外文):Yu-Ching Wu
論文名稱:聚(L)離氨酸-戊二醛-八氰基鉀鉬酸鹽/黃血鹽/矽鉬酸鹽薄膜修飾電極的電化學性質探討
論文名稱(外文):Selective Detection of Biologically Important Compounds at Metal Cyanide Complexes and Silicomolybdate-Doped-PLL-GA Film Modified Electrodes
指導教授:陳生明
指導教授(外文):Shen-Ming Chen
口試委員:連萬福曾添文金目述呂光烈
口試委員(外文):Wan-Fu LienTien-Wen TsengRangasamy ThangamuthuKuang-Lieh Lu
口試日期:2008-07-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:68
中文關鍵詞:聚(L)離氨酸-戊二醛-八氰基鉀鉬酸鹽修飾電極電催化氟烯磺酸的聚合物維他命C選擇性偵測
外文關鍵詞:Octacyanomolybdate-doped-glutaraldehyde-cross-linked poly-L-lysine filmModified electrodeElectrocatalysisNafionAscorbic AcidSelective estimation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要分三部份來探討,第一部分是使用聚(L)離氨酸-戊二醛-八氰基鉬酸鹽薄膜修飾玻離碳電極在0.1 M 硫酸溶液下對維他命C的氧化反應。八氰基鉬酸根鹽離子能成功製備吸附在聚(L)離氨酸-戊二醛陽離子層薄膜上。據此修飾電極在緩衝溶液中的電流波峰,可知道在低的掃描速率5~200 mVs-1,電極表面發生電子轉移,而在掃描速率200~1000 mVs-1發生質量轉換。聚(L)離氨酸-戊二醛-八氰基鉬酸鹽電極有比PVP-八氰基鉬酸鹽電極較寬廣的pH範圍。使用循環伏安法和旋轉碟電極法,觀察裸電極和修飾電極對維他命C氧化的電催化反應。由旋轉碟電極法分析可得知一催化速率常數為9.54×105 cm3 mol-1 s-1,對維他命C濃度的靈敏度為74.73 µA mM-1。聚(L)離氨酸-戊二醛-八氰基鉬酸鹽薄膜修飾電極能使維他命C發生氧化反應,而對於其它生化分子的偵測,如:多巴胺、尿酸、NADH和葡萄糖存在下,仍然有很明顯的偵測電流。此聚(L)離氨酸-戊二醛-八氰基鉬酸鹽薄膜修飾玻離碳電極有不錯的選擇性對維他命C在有其它干擾物的溶液中。
第二部份是成功製備聚(L)離氨酸-戊二醛-黃血鹽薄膜修飾電極,對其電催化學性質之探討,偵測在有維他命C溶於磷酸溶液裡的多巴胺。Fe(CN)64-能成功製備吸附在聚(L)離氨酸-戊二醛陽離子層薄膜上,由修飾電極在磷酸緩衝溶液中的波峰電流對掃描速率做圖下,可知在低的掃描速率下,發生電子轉移轉移過程,在高掃描速率電極表面發生質傳控制。PLL-GA-Fe(CN)64- 電極有較寬廣的pH偵測範圍,使用循環伏安法和旋轉碟電極法觀察對維他命C和多巴胺的電催化性質,對所偵測的催化物種,旋轉碟電極法的靈敏度是循環伏安法的10倍。最後在PLL-GA-Fe(CN)64-上覆蓋一層Nafion,用PLL-GA-Fe(CN)64--Nafion修飾電極去偵測,在有維他命C和多巴胺存在的磷酸溶液中,探討此修飾電極之電化學性質。
第三部分的工作是使用聚(L)離氨酸-戊二醛-矽鉬酸酸鹽薄膜修飾電極,在0.1 M 硫酸溶液下對雙氧水和溴酸鉀的還原反應。SiMo能成功製備吸附在聚(L)離氨酸-戊二醛陽離子層薄膜上。根據此修飾電極在0.1 M硫酸溶液中的電流波峰值,可知電極表面發生電子轉移。使用循環伏安法和計時安培法,去觀察雙氧水和溴酸鉀還原催化反應,根據溴酸鉀在計時安培法下的催化電流值,取自線性濃度範圍5×10-5到1.2×10-4 M計算得到一個靈敏度3.57 µA mM-1;同樣的可得到雙氧水的靈敏度為0.57 µA mM-1。聚(L)離氨酸-戊二醛-矽鉬酸鹽薄膜修飾電極能使雙氧水發生還原反應,而對於其它生化分子的偵測,如:多巴胺、維他命C、尿酸是沒催化電流產生的。聚(L)離氨酸-戊二醛-矽鉬酸鹽薄膜修飾對雙氧水在有其它混和干擾物存在的溶液中,進行電化學偵測,有不錯的選擇性偵測。
Part I:The present work describes oxidation of ascorbic acid (AA) at octacyanomolybdate-doped-glutaraldehyde-cross-linked poly-L-lysine
( PLL-GA-Mo(CN)84- ) film modified glassy carbon electrode in 0.1 M H2SO4. The modified electrode has been successfully prepared by means of electrostatically trapping the Mo(CN)84- mediator in the cationic film of glutaraldehyde-cross-linked poly-L-lysine. The dependence of peak current of modified electrode in pure supporting indicates that the charge transfer process was surface confined at low scan rates ( 5 to 200 mV s-1 ), and under mass transfer control at higher scan rates (200 to 1000 mV s-1). The advantage of cross-linked PLL-GA coating is that it extends the electrochemical activity of PLL-GA-Mo(CN)84- modified electrode over wide pH range compared to protonated poly(4-vinylpyridine) (PVP) based electrocatalytic assemblies. Cyclic voltammetry and rotating disc electrode (RDE) techniques are used to investigate the electrocatalytic oxidation of ascorbic acid and compared with its oxidation at bare and undoped PLL-GA film coated electrodes. The rate constant rate of catalytic reaction (k) obtained from RDE analysis was found to be 9.54 ×105 cm3mol-1s-1. The analytical determination of ascorbic acid has been carried out using RDE technique over the physiological interest of ascorbic acid concentrations with a sensitivity of 74.73 µA mM-1. Interestingly, although PLL-GA-Mo(CN)84- modified electrode facilitated the oxidation of ascorbic acid, the response of other electroactive biomolecules such as dopamine, uric acid, NADH, glucose were generally suppressed. This unique feature of PLL-GA-Mo(CN)84- modified electrode allowed for the development of a highly selective method for the determination of ascorbic acid in complex biological matrices.
PartⅡ:The present work describes preparation and characterization of hexacyanoferrate-doped-glutaraldehyde-cross-linked poly-L-lysine (PLL-GA- Fe(CN)64-) film modified glassy carbon electrode and its application in detection of dopamine in the presence of ascorbic acid in pH 6.8 phosphate buffer solution (PBS). The modified electrode has been successfully prepared by electrostatically binding negatively charged Fe(CN)64- mediator into cross-linked poly-L-lysine cationic film. The dependence of peak current of modified electrode in pure supporting shows that the charge transfer process was surface confined at low scan rates, and under mass transfer control at higher scan rates. The PLL-GA-Fe(CN)64- film electrode retains its electrochemical activity over wide pH. Cyclic voltammetry and rotating disc electrode (RDE) techniques are used to investigate the electrocatalytic activity of modified electrode towards oxidation of dopamine and ascorbic acid. The PLL-GA-Fe(CN)64- film electrodes are successfully used for the individual estimation of both biomolecules in the concentration range of physiological interest. The sensitivity of modified electrode is more than 10 times higher for both dopamine and ascorbic acid when determined using RDE technique compared to cyclic voltammetry method. Finally, attempt has been made to use Nafion-coverd- PLL-GA-Fe(CN)64- film electrodes for the detection of dopamine in the presence of ascorbic acid by using voltammetric technique.
Part Ⅲ:The present work describes reduction of hydrogen peroxide (H2O2) and bromate (BrO3-) at silicomolybdate-doped-glutaraldehyde-cross-linked poly-L-lysine (PLL-GA-SiMo) film modified glassy carbon electrode in 0.1M H2SO4. The modified electrode has been successfully prepared by means of electrostatically trapping the silicomolybdate mediator in the cationic film of glutaraldehyde-cross-linked poly-L-lysine. The dependence of peak current of modified electrode in pure supporting indicates that the charge transfer process was surface confined. Cyclic voltammetry was used to investigate the electrocatalytic reduction of H2O2 and BrO3-, and compared with their reduction at bare and undoped PLL-GA film coated electrodes. The analytical determination of bromate has been carried out in stirred solution with a sensitivity of 3.57 µA mM-1 over the linear concentration range between 5 ×105 and 1.2 × 10-4 M. Amperometric estimation of H2O2 in stirred solution at -50 mV (vs Ag/AgCl) shows a sensitivity of 0.57 µA mM-1. Interestingly, PLL-GA-SiMo modified electrode facilitated the reduction of H2O2, and not responded to potential interferrents such as dopamine, ascorbic acid and uric acid. This unique feature of PLL-GA-SiMo modified electrode allowed for the development of a highly selective method for the determination of H2O2 in the presence of interferents.
中文摘要 i
英文摘要 iii
誌謝 vi
目錄 vii
圖目錄 x
第一章 緒論 1
1.1電化學分析法 1
1.1.1 感測器的定義 1
1.1.2 生物感測器 3
1.2修飾電極簡介 4
1.2.1 修飾電極之製備方法 4
1.2.2 修飾電極的應用 5
1.3簡述:聚離氨酸、戊二醛、多巴胺、維他命C、溴酸鉀、雙
氧水6
1.3.1 聚離氨酸 6
1.3.2 戊二醛 7
1.3.3 Nafion 7
1.3.4 多巴胺 8
1.3.5 維他命C 9
1.3.6 矽鉬酸鹽 9
1.3.7 溴酸鉀 10
1.3.8 雙氧水 11
1.4金屬錯合物簡介 11
1.5 簡述電催化 12
第二章 實驗藥品器材與分析方法 13
2.1實驗藥品器材 13
2.1.1 實驗器材 13
2.1.2 實驗藥品 13
2.2實驗原理與方法 15
2.2.1 循環伏安法 15
2.2.1.1 原理 15
2.2.1.2 實驗裝置 20
2.2.2 旋轉環-碟電極 20
2.2.2.1 原理 20
2.2.2.2 實驗方法 22
2.2.2.3 實驗裝置 23
第三章 聚(L)離氨酸-戊二醛-八氰基鉬酸鹽修飾電極對維他命C的選擇性偵測和電催化性質研究 24
3.1前言 24
3.1製備PLL-GA-Mo(CN)84-修飾電極 25
3.3 PLL-GA-Mo(CN)84-修飾電極的電化學性質 25
3.4LL-GA-Mo(CN)84-修飾電極電催化性質探討 26
3.5用旋轉碟電極法對PLL-GA-Mo(CN)84-的電化學性質研究 26
3.6 PLL-GA-Mo(CN)84-電極的應用 27
3.7對維他命C的選擇性偵測 27
3.8結論 27
第四章 聚(L)離氨酸-戊二醛-黃血鹽修飾電極對維他命C和多巴胺電催化性質研究 28
4.1前言 28
4.2結果與討論 29
4.2.1 PLL-GA-Fe(CN)64-電化學性質 29
4.2.2 PLL-GA-Fe(CN)64-電催化性質 30
4.2.3 PLL-GA-Fe(CN)64-對維他命C的電催化活性 30
4.2.4 PLL-GA-Fe(CN)64-對多巴胺的電催化活性 30
4.2.5 PLL-GA-Fe(CN)64-修飾電極的分析運用 31
4.2.6在維他命C存在的環境下偵測多巴胺 32
4.3結論 32
第五章 聚(L)離氨酸-戊二醛-矽鉬酸鹽修飾電極對雙氧水和溴酸鉀電催化性質研究 34
5.1前言 34
5.2結果與討論 34
5.2.1 PLL-GA-SiMo修飾電極的製備 34
5.2.2 PLL-GA-SiMo修飾電極電化學特性 35
5.2.3 PLL-GA-SiMo修飾電極對雙氧水的電催化行為 35
5.2.4 PLL-GA-SiMo修飾電極對溴酸鉀的電催化行為 36
5.2.5 PLL-GA-SiMo修飾電極的穩定性測試 37
5.3結論 37
參考文獻 62
[1] A. Skoog and J. J. Leary, Principles of Instrumental Analysis, 4th ed. Philadelphia: Saunders College Publishing, (1992)
[2] J.Clark, C.Lyons, Annals of the New York Academy of Sciences, 102 (1962) 29
[3] B.Danielsson, K. Mosbach, Oxford University Press:New York.,1989.
[4] A.Sternesjo, Anal. Chem.,226(1995) 175.
[5] M. A. Glimartin, J. P.Hart, Analyst, 120 (1995) 1029.
[6] P. Saber, W. Lund, Talanta. 29 (1982) 457.
[7] J. Wang, D. L. Hutchins Kumar, Anal. Chem. 58 (1986) 402.
[8] R. P. Baldwin, Thomsen, K. N. Talanta, 38 (1991) 1.
[9] R. W. Murray, A. G.. Ewing, R. A. Durst, Anal. Chem, 59 (1987) 379A.
[10] W. M. Damien, Analyst, 9 (1994) 1953.
[11] R. F. Lane, A. T. Hubbard, J. Phys, Chem. 77 (1973) 1401.
[12] C. R. Martin, T. A. Rhoades, J. A. Ferguson, Anal. Chem. 54 (1982) 1639.
[13] C. S. Cha, J. Chen, P. F. Liu, Electroanal. Chem. 345 (1993) 463.
[14] M. A. Gilmartin, J. P. Hart, Analyst 120 (1995)1029.
[15] D. W. M. Arrigan, Analyst 119 (1994) 1953.
[16]www2.che.nthu.edu.tw/nsc_polymer/nsc-polymer/94- report/10/942216E002023.pdf
[17]醫療院所戊二醛作業人員健康危害預防手冊
[18] Q.L. Yang, P, Atanasov, E. Wilkin, Sens. Actuators. B-Chem. 46 (1998) 249.
[19] M. Yagi, K.Nagai, T. Onikubo, M.J. Kaneko, Electroanal. Chem.383 (1995) 61.
[20] T.L. Ying, Z.J. Wang,H.Y. Liu, K. Sun, J.Q. Deng, Prog. Biochem. Biophys. 24 (1997) 254.
[21] A.A.Karyakin, E.E.Karyakina, L. Gorton, O.A. Bobrova, L.V. Lukachova, A.K. Gladilin, A.Levashov, Anal. Chem.68 (1996) 4335.
[22] A. Linkheimer, J. Molenat, C. Gavach, J. Electroanal. Chem. 216 (1987) 71.
[23] M.A. Robertson, H.L.A. Yeager, Macromolecules 29 (1996) 5166.
[24] P.Ugo, B. Ballarin, S. Daniele, G.A. Mazzocchin, J. Electroanal.Chem. 324 (1992) 145.
[25] B.H.Swaile, E.A. Blubaugh, C.J. Seliskar, W.R. Heineman, Anal. Chem. 70 (1998) 4326.
[26] J.G.Steele, G. Johnson, W.D. Norris, P.A. Underwood, Biomaterials 12 (1991) 531.
[27] J. Wang, P. Tuzhi, Anal. Chem. 58 (1986) 3257.
[28] J. Oni, T. Nyokong, Anal. Chim. Acta 434 (2001) 9.
[29] A. Dalmia, C.C. Liu, R.F. Savinell, J. Electroanal. Chem. 430 (1997) 205.
[30] M.A. Chen, H.L. Li, Electroanalysis 10 (1998) 477.
[31] F. Malem, D. Mandler, Anal. Chem. 65 (1993) 37.
[32] C.R. Raj, K. Tokuda, T. Ohsaka, Bioelectrochemistry 53 (2001) 183.
[33] D.W.A. Arrigan, M. Ghita, V. Beni, Chem. Commun. (2004) 732
[34] D.Ravi Shankaran, K.Limura, T.Kato, Sensors and Actuators B 94 (2003) 73.
[35] S.-M. Chen, M.-I. Liu, J.Electroanal.Chem 579 (2005) 153-162.
[36] D.-M. Zhou, H.-X. Ju, H.-Y. Chen, J.Electroanal.Chem 408 (1996) 219-223.
[37] B.A. Fox, A.G. Cameron, Food Science, Nutrition and Health, 5thed, Edward Arnold, London, (1989) 261.
[38] I.G. Casello, M.R. Guascito, Electroanalysis 9 (1997) 1381.
[39] P.R. Roy, T. Okajima, T. Ohsaka, J. Electroanal. Chem. 561 (2004).
[40] G. Moreno, F. Pariente, E. Lorenzo, Anal. Chim. Acta 420 (2000).
[41] H.R. Zare, S.M. Golabi, J. Solid State Electrochem. 4 (2000) 87.
[42] J.-B. Raoof, R. Ojani, S. R.Nadimi, Electrochimica Acta 50 (2005)4694-4698.
[43] S.S.L. Castro, V.R. Balbo, P.J.S. Barbeira, N.R. Stradiotto, Talanta 55 (2001) 249.
[44] A.M. Yu, H.-L. Zhang, H.-Y. Chen, Electroanalysis 9 (1997) 788.
[45] P.R. Roy, T. Okajima, T. Ohsaka, Bioelectrochemistry 59 (2003) 11.
[46] Z. Gao, K.S. Siow, A. Ng, Y. Zhang, Anal. Chim. Acta 343 (1997) 49.
[47] G. Jin,Y. Zhang, W. Cheng, Sensors and Actuators B 107 (2005) 528.
[48] S.M.Golabi, L.Irannejad, Electroanalysis 11 (2005)17.

[49] K. Itaya, I. Uchida and V. D. Neff, Acc. Chem. Res., 19(1986)162.
[50] http://www.ssm.gov.mo/foodsafety/doc/d3.pdf
[51] 行政院衛生署消費者資訊網
[52] C. H. Snyder, The Extraordinary Chemistry of Ordinary Things. 2nd ed.,Wiley, New York 1995.
[53] S. Mannino, M. S. Cosio, Analyst 1997, 122, 1153.
[54] A. V. Pereira, O. Fatibello-Filho, Anal. Chim. Acta 1998, 366, 55.
[55] T. Perez-Ruiz, C. Martinez-Losano, V. Tomas, C. Sidrach, Anal. Chim. Acta 1997, 248, 115.
[56] I. B. Agater, R. A. Jewsbury, Anal. Chim. Acta 1997, 356, 289.
[57] M. Freed, Methods of Vitamin Assay, 3rd ed, Interscience, New York 1966.
[58 ] C. R. Raj, T. Ohsaka, J. Electroanal. Chem. 2003, 540, 69.
[59 ] Z. Gao, K. S. Siow, A. Ng, Y. Zang, Anal. Chim. Acta 1997, 343, 49.
[60 ] X. Xing, T-C Tan, M. Shao, C-C Liu, Electroanalysis 1992, 4, 191.
[61 ] C. A. Pessoa, Y. Gushikem, L. T. Kubota, Electroanalysis 1997, 9, 800.
[62] L. Tian, L. Chen, L. Liu, W. Song, H. Xu, Sens. Actuators B 2006, 113, 150.
[63] R. W. Murray, A. G. Ewing, R. A. Durst, Anal. Chem. 1987, 59, 379.
[64] A. A. S. Alfaya, Y. Gushikem, J. Colloid Interf. Sci. 1999, 209, 428.
[65] C. Ueda, D. Chi-Sing Tse, T. Kuwana, Anal. Chem. 1982, 54, 850.
[66] A. S. N. Murthy, Anita, Biosens. Bioelectron. 1994, 9, 439.
[67] M. H. Pournaghi-Azar, H. Razmi-Nerbin, J. Electroanal. Chem. 2000, 488, 17.
[68] L. Zhang, Y. Sun, X. Lin, Analyst 2001, 126, 1760.
[69] L. Zhang, X. Lin, Analyst 2001, 126, 367.
[70] M. E. G. Lyons, W. Breen, J. Cassidy, J. Chem. Soc., Faraday Trans. 1991, 87, 115.
[71] R. Thangamuthu, S. M. Senthilkumar, K. Chandrasekara Pillai, Sens. Actuators B 2006, 120, 745.
[72] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, NY, 1980.
[73] R. W. Murray, in Electroanalytical Chemistry, Vol. 13 (Ed: A. J. Bard), Marcel Dekker, New York, 1983, p. 191
[74] L. Zhang, S. Dong, J Electroanal Chem 2004, 568, 189
[75] L. Zhang, Electrochim Acta 2007, 52, 6969
[76] S.A. Wring, J.P. Hart, L. Bracey, B.J. Birch, Anal. Chim. Acta, 1990, 231, 203
[77] J. Kulys, E.J.D. Costa, . Anal. Chim. Acta, 1991, 243, 173
[78] A.P. Doherty, M.A. Stanley, J.G. Vos, Analyst 1995, 120, 2371
[79] F.H. Previc, Brain Cogn. 1999, 41, 299.
[80] O. Hornykiewicz, S.J. Kish, Adv. Neurol. 1986, 45, 19.
[81] W. Schultz, Curr. Opin. Neurobiol. 1997, 7, 191.
[82] L. Zhang, N. Teshima, T. Hasebe, M. Kurihara, T. Kawashima, Talanta 1999, 50,677.
[83] I.C. Vieria, O. Fatibello-Filho, Talanta 1998, 46, 559.
[84] P. Nagaraja, R.A. Vasantha, K.R. Sunitha, Talanta 2001, 55, 1039.
[85] F. Musshoff, P. Schmidt, R. Dettmeyer, F. Priemer, K. Jachau, B. Madea, Forensic Sci. Int. 2000, 113, 359.
[86] T.J. Panholzer, J. Beyer, K. Lictwald, Clin. Chem. 1999, 45, 262.
[87] M. A. Raggi, C. Sabbioni, G. Casamenti, G. Gerra, N. Calonghi, L. Masotti, J. Chromatogr. B 1999, 730, 201.
[88] B.A. Patel, M. Arundell, K.H. Parker, M. Yeoman, D. O’Hare, J. Chromatog.r B 2005, 813, 269.
[89] R.L. Aponte, J.A. Diaz, A.A. Pereira, V.G. Diaz, J. Liq. Chromatogr. Relat. Technol. 1996, 19, 687.
[90] A. Liu, I. Honma, H. Zhou, Electrochem. Commun. 2005, 7, 233.
[91] P.R. Roy, T. Okajima, T. Ohsaka, Bioelectrochem. 2003, 59,11.
[92] M.D.P.T. Sotomayar, A.A. Tanaka, L.T. Kubota, Electroanalysis 2003, 15, 787.
[93] T.J. Castilho, M.D.P.T. Sotomayar, L.T. Kubota, J. Pharm. Biomed. Anal. 2005, 37, 785.
[94] K. Miyazaki, G. Matsumoto, M. Yamada, S. Yasui, H. Kaneko, Electrochim. Acta 1999, 44, 3809.
[95] J.M. Zen, P.J. Chen, Electroanalysis 1998, 10, 12.
[96] J.M. Zen, W.M Wang, G. Ilangovan, Anal. Chim. Acta 1998, 372, 315.
[97] M. Wei, M.X. Li, N.Q. Li, Z.N. Gu, X. Duan, Electrochim. Acta 2002, 47, 2673.
[98] J.X. Wang, M.X. Li, Z.J. Shi, N.Q. Li, Z.N. Gu, Electroanalysis 2002, 14, 225.
[99] M.D. Rubianes, G.A. Rivas, Anal. Chim. Acta 2001, 440, 99.
[100] J. Wang, A. Walcarius, J. Electroanal. Chem. 1996, 407, 183.
[101] Y.F. Tu, H.Y. Chen, Biosens. Bioelectron. 2002, 17, 19.
[102] J.M. Zen, P.J. Chen, Anal. Chem. 1997, 69, 5087.
[103] P. Capella, B. Ghasemzadeh, K. Mitchell and R. Adams, Electroanalysis 1990, 2, 175.
[104] J. Wang and M. Lin, Electroanalysis 1990, 2, 253.
[105] V. Tricoli, F. Nannetti, Electrochim. Acta 2003, 48, 2625.
[106] Part 1 of this report.
[107] S.A. Wring, J.P. Hart, L. Bracey, B.J. Birch, Anal. Chim. Acta, 1990, 231, 203
[108] J. Kulys, E.J.D. Costa, . Chim. Acta, 1991, 243, 173
[109] S. Alpat, S. K. Alpat, A. Telefoncu, Anal. Bioanal. Chem. 2005, 383, 695.
[110] D.-M. Zhou, H.-X. Ju, H.-Y. Chen, J. Electroanal. Chem. 1996, 408, 219.
[111] Md. Aminur Rahman, M.-S. Won, Y.-B. Shim, Electroanalysis 2007, 19, 631
[112] M.T. Pope, A. Muller, Angew. Chem. Int. Ed. Engl. 30 (1991) 34.
[113] M. Sadakane, E. Steckhan, Chem. Rev. 98 (1998) 219.
[114] P.J. Kulesza, G. Roslonek, L.R. Faulkner, J. Electroanal. Chem. 280 (1990) 233.
[115] L. Li, W. Li, C. Sun, L. Li, Electroanalysis 14 (2002) 368.
[116] D. Pan, J. Chen, L. Nie, W. Tao, S. Yao, J. Electroanal. Chem. 579 (2005) 77.
[117] B. Keita, L. Nadjo, J. Electroanal. Chem. 227 (1987) 265.
[118] B. Keita, L. Nadjo, J. Electroanal. Chem. 247 (1988) 157.
[119] H. Sung, H. So, W.K. Palk, Electrochim. Acta 39 (1994) 645.
[120] L. Cheng, J.A. Cox, Chem. Mater. 14 (2002) 6.
[121] D. Martel, A. Kuhn, Electrochim. Acta 45 (2000) 1829.
[122] B. Wang, S. Dong, Electrochim. Acta 41 (1996) 895.
[123] C. Rong, F.C. Anson, Inorg. Chim. Acta 242 (1996) 11.
[124] C. Rong, F.C. Anson, Anal. Chem. (1994) 3124.
[125] Z. Navraitilovaı, P. Kula, Eleltroanalysis 15 (2003) 837.
[126] T. Wielgos, A. Fitch, Electroanalysis 2 (1990) 449.
[127] C. Lei, F. Lisdat, U.Wollenberger, F.W. Scheller, Eleltroanalysis 11 (1999) 274.
[128] I.V. Kozhevnikov, K.R. KloetstraI, A. Sinnema, H.W. Zandbergen, H. van Bekkum, J. Mol. Catal. A 114 (1996) 287.
[129] C. Fan, Y. Zhuang, G. Li, J. Zhu, D. Zhu, Electroanalysis 12 (2000) 1156.
[130] Y. Sallez, P. Bianco, E. Lojou, J. Electroanal. Chem. 493 (2000) 37.
[131] A. Domeinech, H. Garciıa, J. Marquet, J.L. Bourdelande, J.R. Herance,
Electrochim. Acta 51 (2006) 4897.
[132] J. Yu, H. Ju, Anal. Chem. 74 (2002) 3579.
[133] A. Walcarius, C.R. Chimie, 8 (2005) 693.
[134] A.Walcarius, D. Mandler, J.A. Cox, M. Collinson, O. Lev, J. Mater. Chem. 15 (2005) 3663.
[135] E. Papaconstantinou, M.T. Pope, Inorg. Chem. 6 (1967) 1152
[136] S. Dong, Z. Jin, J. Chem. Soc. Chem. Commun. (1987) 1871
[137] Q. Lu, T. Zhou, S. Hu, Biosens. Bioelectron. 22 (2007) 899
[138] X-M. Miao, R. Yuan, Y-Q. Chai, Y-T. Shi, Y-Y. Yuan, J. Electroanl. Chem.612 (2008) 157
[139] Y. Li, W. Bu, L. Wu, C. Sun, Sens. Actuators B 107 (2005) 921
[140] M. Zhou, L.-P. Guo, F.-Y. Lin, H.-X. Liu, Anal. Chim. Acta 587 (2007) 124
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 鈷紫質修飾金電極的電催化還原反應研究
2. 聚(L)離氨酸-戊二醛-磷鉬酸鹽/矽鎢酸鹽與染料-奈米碳管薄膜修飾電極之電化學性質研究
3. CTAB/MnO2薄膜、polyMnTAPP-奈米金薄膜和MnO2-PEDOT薄膜修飾電極製備及電催化特性的研究
4. 聚(L)離胺酸-戊二醛-磷鎢酸鹽/矽鉬酸鹽薄膜修飾電極的電化學性質探討
5. 自組裝單層鈷紫質修飾金電極的製備及電催化2-硫氫乙醇氧化反應研究
6. 利用生物聚合物結合多層奈米碳管製備神經傳導物質感測器
7. 染料聚合物與多層奈米碳管結合之複合薄膜修飾電極的製備及其對生化物質電催化性質之研究
8. 細胞色素C及血紅素固定於DNA和Nafion與聚鐵紫質結合多層奈米碳管薄膜的製備和電催化特性之研究
9. 氧化鋅/鋅赤血鹽與氧化鋅/鋅赤血鹽/氧化釕赤血鹽複合薄膜的電聚合製備、特性及其電催化性質之研究
10. 釕氧化物、鎳氧化物與Nafion及多層奈米碳管複合薄膜修飾電極的電化學製備及其電催化性質之研究
11. 鋨普魯士藍矽鉬酸鹽、nano-TiO2/酸性黃色9號與氧化鋅/血清素複合薄膜的製備及其電催化性質的研究
12. 普魯士藍修飾網版電極偵測對-苯醌催化還原反應之研究
13. 聚褪黑激素、銅錯合染料與二甲苯酮-4薄膜修飾電極的製備及其對生物分子的電催化性質之研究
14. 腎上腺素、食用色素藍色一號及孔雀石綠化學修飾電極的製備及其電催化性質之研究
 
無相關期刊
 
1. 奈米金屬鈀、聚苯胺/奈米金屬鈀和NDGA/奈米金屬鈀薄膜修飾電極的製備及其電催化特性之研究
2. 奈米複合材料修飾電極的製備、特性及應用於電化學與生物感測器
3. 聚(L)離氨酸-戊二醛-磷鉬酸鹽/矽鎢酸鹽與染料-奈米碳管薄膜修飾電極之電化學性質研究
4. CTAB/MnO2薄膜、polyMnTAPP-奈米金薄膜和MnO2-PEDOT薄膜修飾電極製備及電催化特性的研究
5. 化學與電化學法製備銀奈米粒子及其催化應用
6. 利用奈米碳管結合染料的電化學研究
7. 聚(L)離胺酸-戊二醛-磷鎢酸鹽/矽鉬酸鹽薄膜修飾電極的電化學性質探討
8. 聚合物及奈米材料修飾電極的製備與特性及應用於電化學及生物感測
9. 黃素腺嘌呤雙核甘酸/nano-TiO2、nano-TiO2/DNA/Thionin與Cunano/鄰苯二胺高分子薄膜的製備及其電催化性質的研究
10. PEDOT薄膜修飾電極對化學及生物感測之電化學應用
11. 染料聚合物與多層奈米碳管結合之複合薄膜修飾電極的製備及其對生化物質電催化性質之研究
12. 奈米銀微粒、無機/有機複合薄膜與氧化鋅/銅薄膜修飾電極的電化學製備、特性及電催化特性的研究
13. 氧化鋅/鋅赤血鹽與氧化鋅/鋅赤血鹽/氧化釕赤血鹽複合薄膜的電聚合製備、特性及其電催化性質之研究
14. 釕氧化物、鎳氧化物與Nafion及多層奈米碳管複合薄膜修飾電極的電化學製備及其電催化性質之研究
15. 鋨普魯士藍矽鉬酸鹽、nano-TiO2/酸性黃色9號與氧化鋅/血清素複合薄膜的製備及其電催化性質的研究