|
[1] A. Agrawal, V. Kumar, B. Pandey, Remediation options for the treatment of electroplating and leather tanning effluent containing chromium—a review, Mineral Processing and Extractive Metallurgy Review, 27 (2006) 99-130. [2] F. Baruthio, Toxic effects of chromium and its compounds, Biological trace element research, 32 (1992) 145-153. [3] D.M. Stearns, Multiple hypotheses for chromium (III) biochemistry: why the essentiality of chromium (III) is still questioned, The nutritional biochemistry of chromium (III), (2007) 57-70. [4] F. Gode, E. Pehlivan, Removal of Cr (VI) from aqueous solution by two Lewatit-anion exchange resins, Journal of Hazardous Materials, 119 (2005) 175-182. [5] Z. Jiang, Y. Liu, G. Zeng, W. Xu, B. Zheng, X. Tan, S. Wang, Adsorption of hexavalent chromium by polyacrylonitrile (PAN)-based activated carbon fibers from aqueous solution, RSC Advances, 5 (2015) 25389-25397. [6] R.A. Bartsch, J.D. Way, Chemical separations with liquid membranes: an overview, ACS symposium series, Washington, DC: American Chemical Society,[1974]-, 1996. [7] A. Ahmad, A. Kusumastuti, C. Derek, B. Ooi, Emulsion liquid membrane for heavy metal removal: An overview on emulsion stabilization and destabilization, Chemical engineering journal, 171 (2011) 870-882. [8] D.R. Lloyd, Materials science of synthetic membranes, The Society1985. [9] D. Rai, B.M. Sass, D.A. Moore, Chromium (III) hydrolysis constants and solubility of chromium (III) hydroxide, Inorganic Chemistry, 26 (1987) 345-349. [10] C.D. Pereira, J.G. Techy, E.M. Ganzarolli, S.P. Quináia, Chromium fractionation and speciation in natural waters, Journal of Environmental Monitoring, 14 (2012) 1559-1564. [11] W. Jin, H. Du, S. Zheng, Y. Zhang, Electrochemical processes for the environmental remediation of toxic Cr (VI): A review, Electrochimica Acta, 191 (2016) 1044-1055. [12] C.E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction, Journal of hazardous materials, 223 (2012) 1-12. [13] A.J. Chaudhary, N.C. Goswami, S.M. Grimes, Electrolytic removal of hexavalent chromium from aqueous solutions, Journal of Chemical Technology & Biotechnology, 78 (2003) 877-883. [14] C. Barrera-Díaz, V. Lugo-Lugo, G. Roa-Morales, R. Natividad, S. Martínez-Delgadillo, Enhancing the electrochemical Cr (VI) reduction in aqueous solution, Journal of hazardous materials, 185 (2011) 1362-1368. [15] A. Fernandes, M. Pacheco, L. Ciríaco, A. Lopes, Review on the electrochemical processes for the treatment of sanitary landfill leachates: present and future, Applied Catalysis B: Environmental, 176 (2015) 183-200. [16] M. Rodrigo, P. Cañizares, C. Buitrón, C. Sáez, Electrochemical technologies for the regeneration of urban wastewaters, Electrochimica Acta, 55 (2010) 8160-8164. [17] Y. Yang, M.h. Diao, M.m. Gao, X.f. Sun, X.w. Liu, G.h. Zhang, Z. Qi, S.g. Wang, Facile preparation of graphene/polyaniline composite and its application for electrocatalysis hexavalent chromium reduction, Electrochimica Acta, 132 (2014) 496-503. [18] Y. Tian, L. Huang, X. Zhou, C. Wu, Electroreduction of hexavalent chromium using a polypyrrole-modified electrode under potentiostatic and potentiodynamic conditions, Journal of hazardous materials, 225 (2012) 15-20. [19] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chemical Society Reviews, 43 (2014) 5234-5244. [20] T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Enhanced photocatalytic activity of bismuth-doped TiO 2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye, Journal of nanoparticle research, 15 (2013) 1669. [21] H. Tada, Q. Jin, H. Nishijima, H. Yamamoto, M. Fujishima, S.i. Okuoka, T. Hattori, Y. Sumida, H. Kobayashi, Titanium (IV) dioxide surface‐modified with iron oxide as a visible light photocatalyst, Angewandte Chemie International Edition, 50 (2011) 3501-3505. [22] Y. Ku, I.-L. Jung, Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide, Water research, 35 (2001) 135-142. [23] J. Doménech, J. Muñoz, Photocatalytical reduction of Cr (VI) over ZnO powder, Electrochimica acta, 32 (1987) 1383-1386. [24] Y. Zhang, M. Xu, H. Li, H. Ge, Z. Bian, The enhanced photoreduction of Cr (VI) to Cr (III) using carbon dots coupled TiO2 mesocrystals, Applied Catalysis B: Environmental, 226 (2018) 213-219. [25] Y. Zheng, Z. Yu, F. Lin, F. Guo, K.A. Alamry, L.A. Taib, A.M. Asiri, X. Wang, Sulfur-doped carbon nitride polymers for photocatalytic degradation of organic pollutant and reduction of Cr (VI), Molecules, 22 (2017) 572. [26] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nature materials, 8 (2009) 76. [27] Z. Pan, Y. Zheng, F. Guo, P. Niu, X. Wang, Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers, ChemSusChem, 10 (2017) 87-90. [28] H. Wei, C. Hou, Y. Zhang, Z. Nan, Scalable low temperature in air solid phase synthesis of porous flower-like hierarchical nanostructure SnS2 with superior performance in the adsorption and photocatalytic reduction of aqueous Cr (VI), Separation and Purification Technology, 189 (2017) 153-161. [29] H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks, ACS Publications, 2012. [30] D.G. Madden, H.S. Scott, A. Kumar, K.-J. Chen, R. Sanii, A. Bajpai, M. Lusi, T. Curtin, J.J. Perry, M.J. Zaworotko, Flue-gas and direct-air capture of CO2 by porous metal–organic materials, Phil. Trans. R. Soc. A, 375 (2017) 20160025. [31] R. Liang, F. Jing, L. Shen, N. Qin, L. Wu, MIL-53 (Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr (VI) and oxidation of dyes, Journal of hazardous materials, 287 (2015) 364-372. [32] M.S. Jang, Y.R. Lee, W.S. Ahn, CO2 Cycloaddition of Epichlorohydrin over NH2‐Functionalized MIL‐101, Bulletin of the Korean Chemical Society, 36 (2015) 363-366. [33] X. Zhu, H. Zheng, X. Wei, Z. Lin, L. Guo, B. Qiu, G. Chen, Metal–organic framework (MOF): a novel sensing platform for biomolecules, Chemical Communications, 49 (2013) 1276-1278. [34] L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, B. Wang, Metal–organic frameworks for energy storage: batteries and supercapacitors, Coordination Chemistry Reviews, 307 (2016) 361-381. [35] C.-C. Wang, X.-D. Du, J. Li, X.-X. Guo, P. Wang, J. Zhang, Photocatalytic Cr (VI) reduction in metal-organic frameworks: A mini-review, Applied Catalysis B: Environmental, 193 (2016) 198-216. [36] H.-L. Jiang, Q. Xu, Porous metal–organic frameworks as platforms for functional applications, Chemical Communications, 47 (2011) 3351-3370. [37] A. Dhakshinamoorthy, H. Garcia, Catalysis by metal nanoparticles embedded on metal–organic frameworks, Chemical Society Reviews, 41 (2012) 5262-5284. [38] M. Yadav, A.K. Singh, N. Tsumori, Q. Xu, Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage, Journal of Materials Chemistry, 22 (2012) 19146-19150. [39] H.-C. Li, W.-J. Liu, H.-X. Han, H.-Q. Yu, Hydrophilic swellable metal–organic framework encapsulated Pd nanoparticles as an efficient catalyst for Cr (VI) reduction, Journal of Materials Chemistry A, 4 (2016) 11680-11687. [40] Q. Liu, B. Zhou, M. Xu, G. Mao, Integration of nanosized ZIF-8 particles onto mesoporous TiO 2 nanobeads for enhanced photocatalytic activity, RSC Advances, 7 (2017) 8004-8010. [41] N.A. Khan, B.K. Jung, Z. Hasan, S.H. Jhung, Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks, Journal of hazardous materials, 282 (2015) 194-200. [42] X. Wang, J. Liu, S. Leong, X. Lin, J. Wei, B. Kong, Y. Xu, Z.-X. Low, J. Yao, H. Wang, Rapid construction of ZnO@ ZIF-8 heterostructures with size-selective photocatalysis properties, ACS applied materials & interfaces, 8 (2016) 9080-9087. [43] H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen, L. Leng, Z. Wu, L. Jiang, H. Li, Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr (VI) reduction, Journal of hazardous materials, 286 (2015) 187-194. [44] L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Multifunctional NH 2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr (vi), Dalton Transactions, 42 (2013) 13649-13657. [45] L. Shi, T. Wang, H. Zhang, K. Chang, X. Meng, H. Liu, J. Ye, An Amine‐Functionalized Iron (III) Metal–Organic Framework as Efficient Visible‐Light Photocatalyst for Cr (VI) Reduction, Advanced Science, 2 (2015) 1500006. [46] C.H. Hendon, D. Tiana, M. Fontecave, C.m. Sanchez, L. D’arras, C. Sassoye, L. Rozes, C. Mellot-Draznieks, A. Walsh, Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization, Journal of the American Chemical Society, 135 (2013) 10942-10945. [47] R. Liang, L. Shen, F. Jing, W. Wu, N. Qin, R. Lin, L. Wu, NH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr (VI), Applied Catalysis B: Environmental, 162 (2015) 245-251. [48] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 103 (2006) 10186-10191. [49] M. Eddaoudi, D.F. Sava, J.F. Eubank, K. Adil, V. Guillerm, Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties, Chemical Society Reviews, 44 (2015) 228-249. [50] X.-z. Kang, Z.-W. Song, Q. Shi, J.-X. Dong, Utilization of Zeolite Imidazolate Framework as an Adsorbent for the Removal of Dye from Aqueous Solution, Asian Journal of Chemistry, 25 (2013). [51] H. Wu, W. Zhou, T. Yildirim, Hydrogen storage in a prototypical zeolitic imidazolate framework-8, Journal of the American Chemical Society, 129 (2007) 5314-5315. [52] G. Kumari, K. Jayaramulu, T.K. Maji, C. Narayana, Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study, The Journal of Physical Chemistry A, 117 (2013) 11006-11012. [53] Z. Zhang, S. Xian, H. Xi, H. Wang, Z. Li, Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface, Chemical Engineering Science, 66 (2011) 4878-4888. [54] C. Chen, J. Kim, D.-A. Yang, W.-S. Ahn, Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect, Chemical Engineering Journal, 168 (2011) 1134-1139. [55] Z. Zhang, S. Xian, Q. Xia, H. Wang, Z. Li, J. Li, Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF‐8 via postsynthetic modification, AIChE Journal, 59 (2013) 2195-2206. [56] H.-L. Jiang, B. Liu, Y.-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake, Journal of the American Chemical Society, 133 (2011) 11854-11857. [57] H.B. Wu, S. Wei, L. Zhang, R. Xu, H.H. Hng, X.W. Lou, Embedding Sulfur in MOF‐Derived Microporous Carbon Polyhedrons for Lithium–Sulfur Batteries, Chemistry–A European Journal, 19 (2013) 10804-10808. [58] C. Chizallet, S. Lazare, D. Bazer-Bachi, F. Bonnier, V. Lecocq, E. Soyer, A.-A. Quoineaud, N. Bats, Catalysis of transesterification by a nonfunctionalized metal− organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations, Journal of the American Chemical Society, 132 (2010) 12365-12377. [59] U.P. Tran, K.K. Le, N.T. Phan, Expanding applications of metal− organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction, Acs Catalysis, 1 (2011) 120-127. [60] R.-Q. Zhong, R.-Q. Zou, T. Nakagawa, M. Janicke, T.A. Semelsberger, A.K. Burrell, R.E. Del Sesto, Improved Hydrogen Release from Ammonia–Borane with ZIF-8, Inorganic chemistry, 51 (2012) 2728-2730. [61] B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications, Journal of Materials Chemistry A, 2 (2014) 16811-16831. [62] H.-P. Jing, C.-C. Wang, Y.-W. Zhang, P. Wang, R. Li, Photocatalytic degradation of methylene blue in ZIF-8, RSC Advances, 4 (2014) 54454-54462. [63] K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and applied chemistry, 57 (1985) 603-619. [64] Y. Guan, J. Shi, M. Xia, J. Zhang, Z. Pang, A. Marchetti, X. Wang, J. Cai, X. Kong, Monodispersed ZIF-8 particles with enhanced performance for CO2 adsorption and heterogeneous catalysis, Applied Surface Science, 423 (2017) 349-353. [65] K. Zhu, C. Chen, H. Xu, Y. Gao, X. Tan, A. Alsaedi, T. Hayat, Cr (VI) reduction and immobilization by core-double-shell structured magnetic polydopamine@ zeolitic idazolate frameworks-8 microspheres, ACS Sustainable Chemistry & Engineering, 5 (2017) 6795-6802. [66] S. Luanwuthi, A. Krittayavathananon, P. Srimuk, M. Sawangphruk, In situ synthesis of permselective zeolitic imidazolate framework-8/graphene oxide composites: rotating disk electrode and Langmuir adsorption isotherm, RSC Advances, 5 (2015) 46617-46623. [67] D.K. Panchariya, R.K. Rai, E. Anil Kumar, S.K. Singh, Core–Shell Zeolitic Imidazolate Frameworks for Enhanced Hydrogen Storage, ACS Omega, 3 (2018) 167-175. [68] 行政院公報,農業環保篇,第173期(2016)第022卷,環署檢字第1050073334號 [69] 行政院公報,農業環保篇,第038期(2009)第015卷,環署檢字第0980016109號
|