跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 07:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃昱綺
研究生(外文):Yu-Chi Huang
論文名稱:胺基改質鋅有機金屬骨架於光催化還原六價鉻之應用
論文名稱(外文):Amine-modified Zinc-based Metal Organic Framework for Photocatalytic Reduction of Hexavalent Chromium from Water.
指導教授:胡哲嘉
指導教授(外文):Che-Chia Hu
學位類別:碩士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:111
中文關鍵詞:有機金屬鋅骨架結構材料重金屬六價鉻光催化還原法
外文關鍵詞:Zinc-based Metal Organic FrameworkHexavalent ChromiumPhotocatalytic Reduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
工業排放的廢水之中有著許多汙染物,製造工廠以及電子設備元件工廠所排放的廢水皆為有毒之重金屬離子,其中重金屬六價鉻離子被列為致癌物質,對於六價鉻之廢水的方法有很多,其中光催化還原法不但能夠有效處理六價鉻並且將其轉換為較低毒性之三價鉻且不會產生其他廢棄物。
本研究利用具有高孔隙度及高比表面積之ZIF-8奈米顆粒作為光催化還原六價鉻之基材,接續分別透過胺基官能化改質以及半導體氧化鋅複合以提升其光催化還原能力,由SEM、TEM以及XRD鑑定其形貌與結構,並由FT-IR、XPS以及NMR確認結構中官能基之間的鍵結。
為了提升ZIF-8對於六價鉻之光催化還原反應,本實驗分別對於胺基改質材料得出最佳胺基莫耳比例為1:100之胺基改質材料,以及氧化鋅複合材料得出最佳水熱溫度為攝氏125度之半導體複合材料,其中又以氧化鋅複合ZIF-8材料有著最佳之光催化還原能力。接續比較不同胺基莫耳比條件下之胺基改質氧化鋅複合ZIF-8材料,得出最佳實驗條件為1:25之胺基莫耳比下改質攝氏95度水熱合成氧化鋅複合材料,故本實驗成功製備出胺基改質氧化鋅複合ZIF-8於可見光下有效地進行光催化還原六價鉻反應。
Among common industrial wastewater containing organic dyes, heavy metal ions and other contaminants, hexavalent chromium (Cr(VI)) is one of the most toxic and carcinogenic species to the environment and human.
For industrial wastewater treatments, membrane filtration, ionic exchange, adsorption method, and photocatalytic reduction are widely used. In the past decades, photocatalytic reduction method can be regarded as the most harmless and effective approach to remove heavy metal ions in the wastewater.
Zeolitic imidazolate frameworks (ZIFs), a typical structure of metal organic frameworks (MOFs), have high porosity and specific surface area that can serve as a promising candidate for photocatalytic hexavalent chromium reduction.
In this study, amine-modified and ZnO-coupled ZIF-8 were used in an attempt to extend the visible light absorption, and hence the photocatalytic activity to reduce hexavalent chromium. Moreover, ZnO-coupled ZIF-8 with amine modification exhibited photocatalytic reduction activity to remove hexavalent chromium under light irradiation. In summary, ZnO-coupled ZIF-8 showed the highest photocatalytic activity among these samples that can be attributed to its high crystallinity, enhanced visible light absorption, and high surface area.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 2
2-1 工業廢水處理之簡介 2
2-1-1重金屬六價鉻之介紹 2
2-1-2 傳統方法處理重金屬六價鉻 5
2-1-3 還原法處理重金屬六價鉻 10
2-2光催化還原法之原理 15
2-2-1光催化還原六價鉻之反應機制 16
2-2-2 運用於六價鉻還原之光觸媒介紹 18
2-3 有機金屬框架結構(MOF系列)材料之介紹 23
2-3-1 MOF光觸媒還原Cr的應用 23
2-4 光觸媒活性之提升 25
2-4-1金屬奈米顆粒附載 26
2-4-2 半導體結合 27
2-4-3官能化胺基的修飾 30
2-5 材料介紹 38
第三章 研究動機 42
第四章 實驗裝置與步驟 43
4-1實驗材料 43
4-2 儀器與實驗設備 44
4-3 實驗步驟 44
4-3-1 ZIF-8之製備 44
4-3-2 胺基改質ZIF-8之製備 44
4-3-3 半導體氧化鋅複合ZIF-8之製備 45
4-3-4 胺基改質半導體氧化鋅複合ZIF-8之製備 45
4-3-5 光催化還原六價鉻 45
4-4 分析儀器原理 47
第五章 結果與討論 55
5-1 沸石型鋅金屬有機框架(ZIF-8) 55
5-1-1 ZIF-8材料之鑑定 55
5-1-2 ZIF-8對重金屬六價鉻之光催化還原能力 59
5-2 胺基官能化之改質 61
5-2-1 胺基改質ZIF-8材料之鑑定 61
5-2-1.1 不同胺基莫耳比改質ZIF-8材料之鑑定 61
5-2-1.2 不同水熱合成時間胺基改質ZIF-8材料之鑑定 64
5-2-2 胺基改質ZIF-8材料之特性分析 66
5-2-3 胺基改質ZIF-8材料對重金屬六價鉻之光催化還原能力 72
5-3 半導體氧化鋅之複合 75
5-3-1 複合半導體氧化鋅ZIF-8材料之鑑定 75
5-3-2複合半導體氧化鋅ZIF-8材料對重金屬六價鉻之光催化還原能力 78
5-4胺基改質複合半導體氧化鋅ZIF-8 81
5-4-1 胺基改質複合氧化鋅ZIF-8之鑑定 81
5-4-2 胺基改質複合氧化鋅ZIF-8對重金屬六價鉻之光催化還原能力 82
第六章 結論 91
附錄一 92
附錄二 93
附錄三 94
參考文獻 97

圖目錄
第二章 文獻回顧
2-1 工業廢水處理之簡介
圖 2-1-1、液相薄膜分類示意圖[6] 7
圖 2-1-2、Cr-O-H種類之Eh-pH圖[12] 10
圖 2-1-3、重金屬鉻之電凝法機制示意圖[15] 12
2-2 光催化還原法之原理
圖 2-2-1、太陽光譜圖[21] 15
圖 2-2-2、光觸媒反應示意圖 16
圖 2-2-3、pH值影響重金屬鉻還原圖 (a)光催化還原鉻濃度之百分比 (b)吸脫附鉻濃度之百分比 17
圖 2-2-4、氧氣存在影響重金屬鉻還原圖 18
圖 2-2-5、不同重量百分比之碳量子點複合二氧化鈦於光催化還原六價鉻之反應 19
圖 2-2-6、不同wt% CDs/MT之表面電位值(Zeta potential) 19
圖 2-2-7、硫摻雜C3N4奈米管製備流程圖 20
圖 2-2-8、以不同聚合溫度之硫取代CN奈米管對六價鉻之UV/Vis 20
圖 2-2-9、以不同聚合溫度之硫取代CN奈米管對六價鉻之光催化還原反應 21
圖 2-2-10、不同光觸媒對於重金屬六價鉻之光催化還原反應 21
圖 2-2-11、不同光觸媒於六價鉻之光催化還原之比較 22
2-3 有機金屬框架結構(MOF系列)材料之介紹
圖 2-3-1、不同材料於光催化還原重金屬六價鉻反應 23
圖 2-3-2、利用MIL-53(Fe)同時光催化不同汙染物下個別之轉化率 24
圖 2-3-3、MIL-53(Fe)之光催化反應示意圖 24


2-4 光觸媒活性之提升
圖 2-4-1、比較不同金屬附載於MIL-101之光催化還原六價鉻反應 26
圖 2-4-2、不同觸媒對於光催化還原六價鉻之吸收圖 27
圖 2-4-3、不同光觸媒於可見光照下光催化還原六價鉻 28
圖 2-4-4、於不同pH值下ZIF-8之吸附示意圖[41] 28
圖 2-4-5、六價鉻與甲基藍共同存在下不同光觸媒之光催化反應[42] 29
圖 2-4-6、胺基改質MIL-125(Ti)前後之UV/Vis吸收光譜圖比較[43] 30
圖 2-4-7、NH2-UiO-66(Zr)進行光催化反應選擇氧化醇類及還原重金屬鉻之示意圖[44] 31
圖 2-4-8、NH2-UiO-66(Zr)之Mott–Schottky圖[44] 條件:0.2 M Na2SO4 水溶液 (pH = 6.8) 32
圖 2-4-9、重金屬鉻還原之光催化性質之比較[44] 32
圖 2-4-10、NH2-MIL-88B進行光催化還原六價鉻之示意圖[45] 33
圖 2-4-11、不同胺基改質MOF之重金屬鉻還原光催化反應之比較[45] 33
圖 2-4-12、不同光觸媒於重金屬鉻還原光催化反應之比較[45] 34
圖 2-4-13、光觸媒胺基改質之MIL-125(Ti)與不同pH值下的比較[46] 35
圖 2-4-14、Zeta potential對於光觸媒於不同pH值下的影響[46] 35
圖 2-4-15、不同pH值下NH2-MIL-68(In)光催化還原六價鉻之比較[47] 36
圖 2-4-16、不同電洞犧牲試劑下NH2-MIL-68(In)進行光催化還原鉻反應之比較 36
2-5 材料介紹
圖 2-5-1、ZIFs系列單晶X-ray結構示意圖[48] 38
圖 2-5-2、ZMOF材料之沸石型結構 [49] 39
圖 2-5-3、ZIF-8單晶X-ray結構圖[48] 39
圖 2-5-4、不同pH值下ZIF-8於UV光下降解亞甲基藍染劑之光催化性能[62] 40
圖 2-5-5、ZIF-8光催化降解亞甲基藍之反應機制[62] 41
第四章 實驗裝置與步驟
4-4 分析儀器原理
圖 4-4-1、X-射線繞射分析儀 (XRD) 47
圖 4-4-2、傅立葉轉換紅外線光譜儀 (FT-IR) 48
圖 4-4-3、場發射掃描式電子顯微鏡 (FESEM) 49
圖 4-4-4、X-射線光電子光譜儀 (XPS) 50
圖 4-4-5、紫外-可見光光譜儀 (UV/Vis) 51
圖 4-4-6、物理吸脫附等溫曲線類型[63] 53
圖 4-4-7、ICP-OES原理示意圖 54
第五章 結果與討論
5-1 沸石型鋅金屬有機框架(ZIF-8)
圖 5-1-1、分別利用甲醇以及DMSO溶劑製備ZIF-8之XRD圖譜 56
圖 5-1-2、不同溶劑製備ZIF-8之SEM (a) ZIF-8(M) (b)ZIF-8(D) 56
圖 5-1-3、不同溶劑製備ZIF-8之TEM (a) ZIF-8(M) (b)ZIF-8(D) 57
圖 5-1-4、不同溶劑製備ZIF-8之DLS (a) ZIF-8(M) (b) ZIF-8(D) 57
圖 5-1-5、不同溶劑製備ZIF-8之氮氣吸脫附及孔洞分布圖 58
圖 5-1-6、ZI8於可見光下之光催化還原重金屬六價鉻之UV/Vis吸收圖 60
圖 5-1-7、ZIF-8於重金屬六價鉻水溶液之光催化還原速率圖 61
5-2 胺基官能化之改質
圖 5-2-1、不同莫耳比之胺基改質Z8之XRD 62
圖 5-2-2、於不同莫耳比例下胺基改質ZIF-8之FT-IR分段表示圖 63
圖 5-2-3、不同莫耳比胺基改質ZIF-8之SEM圖 64
圖 5-2-4、不同水熱時間下胺基改質ZIF-8材料之XRD圖 65
圖 5-2-5、不同水熱合成時間下胺基改質ZIF-8之SEM圖 66
圖 5-2-6、不同莫耳比下胺基改質ZIF-8之XPS Zn 2p電子能譜圖 67
圖 5-2-7、不同莫耳比下胺基改質ZIF-8之XPS C1s電子能譜圖 67
圖 5-2-8、不同莫耳比下胺基改質ZIF-8之XPS N1s電子能譜圖 68
圖 5-2-9、不同水熱時間下胺基改質ZIF-8之XPS Zn 2p電子能譜圖 69
圖 5-2-10、不同水熱時間下胺基改質ZIF-8之XPS C1s電子能譜圖 69
圖 5-2-11、不同水熱時間下胺基改質ZIF-8之XPS N1s電子能譜圖 70
圖 5-2-12、ZIF-8之1H NMR 71
圖 5-2-13、胺基改質ZIF-8 (Z8 N25)之1H NMR 71
圖 5-2-14、胺基改質ZIF-8 (Z8 N50)之1H NMR 72
圖 5-2-15、胺基改質ZIF-8之UV/Vis 72
圖 5-2-16、胺基改質ZIF-8對六價鉻之光催化還原速率圖 73
圖 5-2-17、胺基改質ZIF-8之對數六價鉻濃度與時間圖 74
圖 5-2-18、胺基改質材料之反應速率常數比較 74
5-3 半導體氧化鋅之複合
圖5-3-1、不同水熱合成溫度下ZnO複合ZIF-8之XRD圖 75
圖5-3-2、不同溫度下ZnO複合ZIF-8之FT-IR圖 76
圖5-3-3、不同合成溫度下ZnO複合ZIF-8之SEM圖 77
圖5-3-4、ZnO複合ZIF-8材料(Z8 Z95)之TEM圖 77
圖5-3-5、不同溫度下ZnO複合ZIF-8之BET吸脫附曲線圖 78
圖5-3-6、不同溫度下ZnO複合ZIF-8之UV/Vis圖 79
圖5-3-7、不同溫度下ZnO複合ZIF-8對六價鉻之光催化還原速率圖 79
圖5-3-8、不同溫度下ZnO複合ZIF-8之對數六價鉻濃度與時間 80
圖5-3-9、不同溫度下ZnO複合ZIF-8材料之反應速率常數比較 80
5-4 胺基改質複合半導體氧化鋅ZIF-8
圖 5-4-1、胺基改質複合氧化鋅ZIF-8之XRD圖 81
圖 5-4-2、不同改質方法對ZIF-8之SEM比較圖 82
圖 5-4-3、不同改質方法對六價鉻之光催化還原速率圖 82
圖 5-4-4、不同改質方法之對數六價鉻濃度與時間圖 83
圖 5-4-5、不同改質方法之反應速率常數比較 83
圖 5-4-6、不同胺基莫耳比Z8 ZN對於六價鉻之光催化還原速率圖 84
圖 5-4-7、不同胺基莫耳比Z8 ZN之對數六價鉻濃度與時間圖 85
圖 5-4-8、不同胺基莫耳比Z8 ZN之反應速率常數比較圖 85
圖 5-4-9、Z8 ZN之1H NMR圖 86
圖 5-4-10、胺基改質反應機制圖 86
圖 5-4-11、胺基改質複合氧化鋅ZIF-8結構示意圖 87
圖 5-4-12、胺基改質複合氧化鋅ZIF-8之對數六價鉻濃度與時間圖 87
圖 5-4-13、胺基改質複合氧化鋅ZIF-8之反應速率常數比較圖 88
圖 5-4-14、Z8 ZN對於六價鉻進行光催化還原反應之XPS O1s電子能譜圖 89
圖 5-4-15、Z8 ZN對於六價鉻進行光催化還原反應之XPS Cr2p電子能譜圖 89
附錄一
圖7- 1、Z8 N1-6之UV/Vis圖 90
圖7- 2、Z8 N2-6之UV/Vis圖……………………………………………………..90
圖7- 3、Z8 N1-6之UV/Vis圖 90
圖7- 4、Z8 N1-24之UV/Vis圖……………………………………………………90
附錄二
圖8- 1、K2Cr2O7 pH=8之校正曲線 93

表目錄
第二章 文獻回顧
表2- 1、106年行政院環保署化工業廢水排放規章 3
表2-2、移除重金屬鉻不同技術之優缺點[4] 5
表2- 3、MOFs複合材料於可見光下六價鉻之光催化還原能力[35] 25
表2- 4、ZIF-8複合材料於觸媒催化應用[61] 40
第四章 實驗裝置與步驟
表 4-1、實驗材料 44
表 4-2、實驗設備 45
第五章 結果與討論
表5-1、不同溶劑製備ZIF-8之孔洞結構參數 59
表5-2、不同水熱時間參數下胺基改質之ZIF-8材料 65
[1] A. Agrawal, V. Kumar, B. Pandey, Remediation options for the treatment of electroplating and leather tanning effluent containing chromium—a review, Mineral Processing and Extractive Metallurgy Review, 27 (2006) 99-130.
[2] F. Baruthio, Toxic effects of chromium and its compounds, Biological trace element research, 32 (1992) 145-153.
[3] D.M. Stearns, Multiple hypotheses for chromium (III) biochemistry: why the essentiality of chromium (III) is still questioned, The nutritional biochemistry of chromium (III), (2007) 57-70.
[4] F. Gode, E. Pehlivan, Removal of Cr (VI) from aqueous solution by two Lewatit-anion exchange resins, Journal of Hazardous Materials, 119 (2005) 175-182.
[5] Z. Jiang, Y. Liu, G. Zeng, W. Xu, B. Zheng, X. Tan, S. Wang, Adsorption of hexavalent chromium by polyacrylonitrile (PAN)-based activated carbon fibers from aqueous solution, RSC Advances, 5 (2015) 25389-25397.
[6] R.A. Bartsch, J.D. Way, Chemical separations with liquid membranes: an overview, ACS symposium series, Washington, DC: American Chemical Society,[1974]-, 1996.
[7] A. Ahmad, A. Kusumastuti, C. Derek, B. Ooi, Emulsion liquid membrane for heavy metal removal: An overview on emulsion stabilization and destabilization, Chemical engineering journal, 171 (2011) 870-882.
[8] D.R. Lloyd, Materials science of synthetic membranes, The Society1985.
[9] D. Rai, B.M. Sass, D.A. Moore, Chromium (III) hydrolysis constants and solubility of chromium (III) hydroxide, Inorganic Chemistry, 26 (1987) 345-349.
[10] C.D. Pereira, J.G. Techy, E.M. Ganzarolli, S.P. Quináia, Chromium fractionation and speciation in natural waters, Journal of Environmental Monitoring, 14 (2012) 1559-1564.
[11] W. Jin, H. Du, S. Zheng, Y. Zhang, Electrochemical processes for the environmental remediation of toxic Cr (VI): A review, Electrochimica Acta, 191 (2016) 1044-1055.
[12] C.E. Barrera-Díaz, V. Lugo-Lugo, B. Bilyeu, A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction, Journal of hazardous materials, 223 (2012) 1-12.
[13] A.J. Chaudhary, N.C. Goswami, S.M. Grimes, Electrolytic removal of hexavalent chromium from aqueous solutions, Journal of Chemical Technology & Biotechnology, 78 (2003) 877-883.
[14] C. Barrera-Díaz, V. Lugo-Lugo, G. Roa-Morales, R. Natividad, S. Martínez-Delgadillo, Enhancing the electrochemical Cr (VI) reduction in aqueous solution, Journal of hazardous materials, 185 (2011) 1362-1368.
[15] A. Fernandes, M. Pacheco, L. Ciríaco, A. Lopes, Review on the electrochemical processes for the treatment of sanitary landfill leachates: present and future, Applied Catalysis B: Environmental, 176 (2015) 183-200.
[16] M. Rodrigo, P. Cañizares, C. Buitrón, C. Sáez, Electrochemical technologies for the regeneration of urban wastewaters, Electrochimica Acta, 55 (2010) 8160-8164.
[17] Y. Yang, M.h. Diao, M.m. Gao, X.f. Sun, X.w. Liu, G.h. Zhang, Z. Qi, S.g. Wang, Facile preparation of graphene/polyaniline composite and its application for electrocatalysis hexavalent chromium reduction, Electrochimica Acta, 132 (2014) 496-503.
[18] Y. Tian, L. Huang, X. Zhou, C. Wu, Electroreduction of hexavalent chromium using a polypyrrole-modified electrode under potentiostatic and potentiodynamic conditions, Journal of hazardous materials, 225 (2012) 15-20.
[19] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances, Chemical Society Reviews, 43 (2014) 5234-5244.
[20] T.S. Natarajan, K. Natarajan, H.C. Bajaj, R.J. Tayade, Enhanced photocatalytic activity of bismuth-doped TiO 2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye, Journal of nanoparticle research, 15 (2013) 1669.
[21] H. Tada, Q. Jin, H. Nishijima, H. Yamamoto, M. Fujishima, S.i. Okuoka, T. Hattori, Y. Sumida, H. Kobayashi, Titanium (IV) dioxide surface‐modified with iron oxide as a visible light photocatalyst, Angewandte Chemie International Edition, 50 (2011) 3501-3505.
[22] Y. Ku, I.-L. Jung, Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide, Water research, 35 (2001) 135-142.
[23] J. Doménech, J. Muñoz, Photocatalytical reduction of Cr (VI) over ZnO powder, Electrochimica acta, 32 (1987) 1383-1386.
[24] Y. Zhang, M. Xu, H. Li, H. Ge, Z. Bian, The enhanced photoreduction of Cr (VI) to Cr (III) using carbon dots coupled TiO2 mesocrystals, Applied Catalysis B: Environmental, 226 (2018) 213-219.
[25] Y. Zheng, Z. Yu, F. Lin, F. Guo, K.A. Alamry, L.A. Taib, A.M. Asiri, X. Wang, Sulfur-doped carbon nitride polymers for photocatalytic degradation of organic pollutant and reduction of Cr (VI), Molecules, 22 (2017) 572.
[26] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nature materials, 8 (2009) 76.
[27] Z. Pan, Y. Zheng, F. Guo, P. Niu, X. Wang, Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers, ChemSusChem, 10 (2017) 87-90.
[28] H. Wei, C. Hou, Y. Zhang, Z. Nan, Scalable low temperature in air solid phase synthesis of porous flower-like hierarchical nanostructure SnS2 with superior performance in the adsorption and photocatalytic reduction of aqueous Cr (VI), Separation and Purification Technology, 189 (2017) 153-161.
[29] H.-C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal–organic frameworks, ACS Publications, 2012.
[30] D.G. Madden, H.S. Scott, A. Kumar, K.-J. Chen, R. Sanii, A. Bajpai, M. Lusi, T. Curtin, J.J. Perry, M.J. Zaworotko, Flue-gas and direct-air capture of CO2 by porous metal–organic materials, Phil. Trans. R. Soc. A, 375 (2017) 20160025.
[31] R. Liang, F. Jing, L. Shen, N. Qin, L. Wu, MIL-53 (Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr (VI) and oxidation of dyes, Journal of hazardous materials, 287 (2015) 364-372.
[32] M.S. Jang, Y.R. Lee, W.S. Ahn, CO2 Cycloaddition of Epichlorohydrin over NH2‐Functionalized MIL‐101, Bulletin of the Korean Chemical Society, 36 (2015) 363-366.
[33] X. Zhu, H. Zheng, X. Wei, Z. Lin, L. Guo, B. Qiu, G. Chen, Metal–organic framework (MOF): a novel sensing platform for biomolecules, Chemical Communications, 49 (2013) 1276-1278.
[34] L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, B. Wang, Metal–organic frameworks for energy storage: batteries and supercapacitors, Coordination Chemistry Reviews, 307 (2016) 361-381.
[35] C.-C. Wang, X.-D. Du, J. Li, X.-X. Guo, P. Wang, J. Zhang, Photocatalytic Cr (VI) reduction in metal-organic frameworks: A mini-review, Applied Catalysis B: Environmental, 193 (2016) 198-216.
[36] H.-L. Jiang, Q. Xu, Porous metal–organic frameworks as platforms for functional applications, Chemical Communications, 47 (2011) 3351-3370.
[37] A. Dhakshinamoorthy, H. Garcia, Catalysis by metal nanoparticles embedded on metal–organic frameworks, Chemical Society Reviews, 41 (2012) 5262-5284.
[38] M. Yadav, A.K. Singh, N. Tsumori, Q. Xu, Palladium silica nanosphere-catalyzed decomposition of formic acid for chemical hydrogen storage, Journal of Materials Chemistry, 22 (2012) 19146-19150.
[39] H.-C. Li, W.-J. Liu, H.-X. Han, H.-Q. Yu, Hydrophilic swellable metal–organic framework encapsulated Pd nanoparticles as an efficient catalyst for Cr (VI) reduction, Journal of Materials Chemistry A, 4 (2016) 11680-11687.
[40] Q. Liu, B. Zhou, M. Xu, G. Mao, Integration of nanosized ZIF-8 particles onto mesoporous TiO 2 nanobeads for enhanced photocatalytic activity, RSC Advances, 7 (2017) 8004-8010.
[41] N.A. Khan, B.K. Jung, Z. Hasan, S.H. Jhung, Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks, Journal of hazardous materials, 282 (2015) 194-200.
[42] X. Wang, J. Liu, S. Leong, X. Lin, J. Wei, B. Kong, Y. Xu, Z.-X. Low, J. Yao, H. Wang, Rapid construction of ZnO@ ZIF-8 heterostructures with size-selective photocatalysis properties, ACS applied materials & interfaces, 8 (2016) 9080-9087.
[43] H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen, L. Leng, Z. Wu, L. Jiang, H. Li, Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr (VI) reduction, Journal of hazardous materials, 286 (2015) 187-194.
[44] L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Multifunctional NH 2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr (vi), Dalton Transactions, 42 (2013) 13649-13657.
[45] L. Shi, T. Wang, H. Zhang, K. Chang, X. Meng, H. Liu, J. Ye, An Amine‐Functionalized Iron (III) Metal–Organic Framework as Efficient Visible‐Light Photocatalyst for Cr (VI) Reduction, Advanced Science, 2 (2015) 1500006.
[46] C.H. Hendon, D. Tiana, M. Fontecave, C.m. Sanchez, L. D’arras, C. Sassoye, L. Rozes, C. Mellot-Draznieks, A. Walsh, Engineering the optical response of the titanium-MIL-125 metal–organic framework through ligand functionalization, Journal of the American Chemical Society, 135 (2013) 10942-10945.
[47] R. Liang, L. Shen, F. Jing, W. Wu, N. Qin, R. Lin, L. Wu, NH2-mediated indium metal–organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr (VI), Applied Catalysis B: Environmental, 162 (2015) 245-251.
[48] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O’Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proceedings of the National Academy of Sciences, 103 (2006) 10186-10191.
[49] M. Eddaoudi, D.F. Sava, J.F. Eubank, K. Adil, V. Guillerm, Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties, Chemical Society Reviews, 44 (2015) 228-249.
[50] X.-z. Kang, Z.-W. Song, Q. Shi, J.-X. Dong, Utilization of Zeolite Imidazolate Framework as an Adsorbent for the Removal of Dye from Aqueous Solution, Asian Journal of Chemistry, 25 (2013).
[51] H. Wu, W. Zhou, T. Yildirim, Hydrogen storage in a prototypical zeolitic imidazolate framework-8, Journal of the American Chemical Society, 129 (2007) 5314-5315.
[52] G. Kumari, K. Jayaramulu, T.K. Maji, C. Narayana, Temperature induced structural transformations and gas adsorption in the zeolitic imidazolate framework ZIF-8: A Raman study, The Journal of Physical Chemistry A, 117 (2013) 11006-11012.
[53] Z. Zhang, S. Xian, H. Xi, H. Wang, Z. Li, Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface, Chemical Engineering Science, 66 (2011) 4878-4888.
[54] C. Chen, J. Kim, D.-A. Yang, W.-S. Ahn, Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect, Chemical Engineering Journal, 168 (2011) 1134-1139.
[55] Z. Zhang, S. Xian, Q. Xia, H. Wang, Z. Li, J. Li, Enhancement of CO2 adsorption and CO2/N2 selectivity on ZIF‐8 via postsynthetic modification, AIChE Journal, 59 (2013) 2195-2206.
[56] H.-L. Jiang, B. Liu, Y.-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, Q. Xu, From metal–organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake, Journal of the American Chemical Society, 133 (2011) 11854-11857.
[57] H.B. Wu, S. Wei, L. Zhang, R. Xu, H.H. Hng, X.W. Lou, Embedding Sulfur in MOF‐Derived Microporous Carbon Polyhedrons for Lithium–Sulfur Batteries, Chemistry–A European Journal, 19 (2013) 10804-10808.
[58] C. Chizallet, S. Lazare, D. Bazer-Bachi, F. Bonnier, V. Lecocq, E. Soyer, A.-A. Quoineaud, N. Bats, Catalysis of transesterification by a nonfunctionalized metal− organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations, Journal of the American Chemical Society, 132 (2010) 12365-12377.
[59] U.P. Tran, K.K. Le, N.T. Phan, Expanding applications of metal− organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction, Acs Catalysis, 1 (2011) 120-127.
[60] R.-Q. Zhong, R.-Q. Zou, T. Nakagawa, M. Janicke, T.A. Semelsberger, A.K. Burrell, R.E. Del Sesto, Improved Hydrogen Release from Ammonia–Borane with ZIF-8, Inorganic chemistry, 51 (2012) 2728-2730.
[61] B. Chen, Z. Yang, Y. Zhu, Y. Xia, Zeolitic imidazolate framework materials: recent progress in synthesis and applications, Journal of Materials Chemistry A, 2 (2014) 16811-16831.
[62] H.-P. Jing, C.-C. Wang, Y.-W. Zhang, P. Wang, R. Li, Photocatalytic degradation of methylene blue in ZIF-8, RSC Advances, 4 (2014) 54454-54462.
[63] K.S. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure and applied chemistry, 57 (1985) 603-619.
[64] Y. Guan, J. Shi, M. Xia, J. Zhang, Z. Pang, A. Marchetti, X. Wang, J. Cai, X. Kong, Monodispersed ZIF-8 particles with enhanced performance for CO2 adsorption and heterogeneous catalysis, Applied Surface Science, 423 (2017) 349-353.
[65] K. Zhu, C. Chen, H. Xu, Y. Gao, X. Tan, A. Alsaedi, T. Hayat, Cr (VI) reduction and immobilization by core-double-shell structured magnetic polydopamine@ zeolitic idazolate frameworks-8 microspheres, ACS Sustainable Chemistry & Engineering, 5 (2017) 6795-6802.
[66] S. Luanwuthi, A. Krittayavathananon, P. Srimuk, M. Sawangphruk, In situ synthesis of permselective zeolitic imidazolate framework-8/graphene oxide composites: rotating disk electrode and Langmuir adsorption isotherm, RSC Advances, 5 (2015) 46617-46623.
[67] D.K. Panchariya, R.K. Rai, E. Anil Kumar, S.K. Singh, Core–Shell Zeolitic Imidazolate Frameworks for Enhanced Hydrogen Storage, ACS Omega, 3 (2018) 167-175.
[68] 行政院公報,農業環保篇,第173期(2016)第022卷,環署檢字第1050073334號
[69] 行政院公報,農業環保篇,第038期(2009)第015卷,環署檢字第0980016109號
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top