跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 12:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭琪媛
研究生(外文):PENG, CHI-YUAN
論文名稱:因應需求之頻繁樣式探勘演算法應用於多商店環境
論文名稱(外文):A Request-Based Frequent Pattern Mining Algorithm in Multi-Store Environment
指導教授:胡筱薇胡筱薇引用關係
指導教授(外文):HU,HSIAO-WEI
口試委員:吳家齊杜逸寧
口試委員(外文):WU,CHIA-CHITU,YI-NING
口試日期:2019-06-21
學位類別:碩士
校院名稱:東吳大學
系所名稱:巨量資料管理學院碩士學位學程
學門:電算機學門
學類:電算機應用學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:67
中文關鍵詞:頻繁樣式探勘多商店環境雲端運算
外文關鍵詞:Frequent Pattern MiningMulti-store EnvironmentCloud Computing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
現今的商業環境下,大部分的中大型企業都有其分支營運據點(分公司、子公司、連鎖商店或是分店等等),這些分支營運據點有可能遍佈整個國家甚至是全球。然而,傳統的頻繁樣式探勘方法並不適用於現今多商店的環境,因此,在過去幾十年來,許多研究便針對多商店的環境來設計進階版頻繁樣式探勘演算法。
然而,在這些進階版的頻繁樣式探勘演算法當中,我們發現或有考量多商店環境,但忽略在雲端運算環境中去探究的議題,例如:雲端運算成本與安全性;有些則是有考量雲端運算環境下的頻繁樣式探勘但忽略多商店環境中所需考量的時空背景差異對於探勘結果的影響。
因此,本研究將提出新型的頻繁樣式探勘演算法,主要是因應需求且考量雲端運算環境限制而設計的頻繁樣式探勘演算法- A Request-Based Frequent Pattern Mining Algorithm(FFPM) in Multi-Store Environment,希望能在同時考量雲端運算成本以及資料安全性的條件之下可快速且彈性的依據用戶需求探勘出不同情境組合下之頻繁樣式項目集。
本研究之實驗分為四個部分來進行,主要目的為評估FFPM的整體執行時間效率,進而與傳統頻繁樣式探勘演算法做執行時間效率上的比較,最後將兩種演算法分別探勘模擬資料及真實資料,再將其結果做比對。實驗結果顯示,不論在時間效率亦或是探勘結果上,相對於傳統方法而言FFPM皆能有良好的表現,能更有效率地挖掘出不同情境組合下的頻繁樣式。
In today’s business environment, most of the companies have branches, subsidiaries, chain stores or dealers. And these branches could be located in many different geographical locations. However, the traditional frequent pattern mining algorithm might not be suitable in the multi-store environment nowadays. Therefore, over the last few decades, there have been many studies focus on advanced frequent pattern mining algorithm in a multi-store environment.
However, we found that some of the existing methods consider only the multi-store environment problem but might not think about the cloud computing issues, for example, the cost and privacy issues in the cloud computing environment. In contrast, some of them overcome the cloud computing environment issue but not focus on frequent pattern mining in a multi-store environment.
In this paper, we propose a new algorithm to remedy this research gap – A Request-Based Frequent Pattern Mining Algorithm (FFPM). We focus on the request-based algorithm and also expect that those frequent patterns under different stores and time periods are considered while considering those cost limitation and privacy problem in the cloud computing environment.
To evaluate the efficiency and effectiveness of the proposed method, four experiments are performing in this study. The first experiment is about the running time of FFPM, and the second and third experiments are efficiency and effectiveness of FFPM compared with Apriori algorithm. The last experiment is evaluating FFPM by using a real data set, called SC-POS. Results of this study show that not only on the running time or precision but the proposed method can also find out those frequent patterns under different stores and time periods even more efficiently compared with the traditional frequent pattern mining algorithm.
謝誌 ........................................................................................................................................... i
摘要 .......................................................................................................................................... ii
Abstract .................................................................................................................................. iii
目錄 ......................................................................................................................................... iv
表目錄 ...................................................................................................................................... v
圖目錄 ..................................................................................................................................... vi
第一章 緒論 .......................................................................................................................... 1
第二章 文獻探討 ................................................................................................................. 11
第一節 APRIORI-LIKE 頻繁樣式探勘 .................................................................................... 12
第二節 NON-APRIORI-LIKE 頻繁樣式探勘 ........................................................................... 12
第三節 基於雲端頻繁樣式探勘方法 ...................................................................................... 16
第四節 考量時空組合情境之頻繁樣式探勘方法...................................................................... 18
第三章 研究方法 ................................................................................................................. 20
第一節 問題定義 ................................................................................................................ 20
第二節 研究方法 ................................................................................................................. 32
第四章 實驗設計與結果分析 ................................................................................................ 42
第一節 模擬實驗一 .............................................................................................................. 45
第二節 模擬實驗二 .............................................................................................................. 50
第三節 模擬實驗三 .............................................................................................................. 52
第四節 真實資料實驗 (SC-POS DATASET) .......................................................................... 58
第五章 結論 ........................................................................................................................ 63
參考文獻 ................................................................................................................................. 65
中文文獻
1.張吉君 (2011). "雲端運算營運模式之研究." 中央大學資訊管理學系碩士在職專班學位論文: 1-95.
2.張益誠, et al. (2016). "企業採用雲端運算之因素." 資訊管理學報 23(3): 305-333.
3.連冠榮 (2013). 基於雲端環境之頻繁樣式探勘方法, fu ren da xue zi xun guan li xue yan jiu suo.
4.陳彥良, et al. (2003). "幾個快速挖掘關聯規則的資料探勘方法." 電子商務學報 5(2): 1-10.
英文文獻
1.Aburrous, M., et al. (2010). "Intelligent phishing detection system for e-banking using fuzzy data mining." Expert systems with applications 37(12): 7913-7921.
2.Agarwal, R. and R. Srikant (1994). Fast algorithms for mining association rules. Proc. of the 20th VLDB Conference.
3.Agarwal, R. C., et al. (2001). "A tree projection algorithm for generation of frequent item sets." Journal of parallel and Distributed Computing 61(3): 350-371.
4.Agrawal, R. and J. C. Shafer (1996). "Parallel mining of association rules." IEEE Transactions on knowledge and Data Engineering 8(6): 962-969.
5.Ahmed, E., et al. (2015). "Seamless application execution in mobile cloud computing: Motivation, taxonomy, and open challenges." Journal of Network and Computer Applications 52: 154-172.
6.Ahmed, E., et al. (2015). "Application optimization in mobile cloud computing: Motivation, taxonomies, and open challenges." Journal of Network and Computer Applications 52: 52-68.
7.Brin, S., et al. (1997). "Dynamic itemset counting and implication rules for market basket data." Acm Sigmod Record 26(2): 255-264.
8.Choudhary, A. K., et al. (2009). "Data mining in manufacturing: a review based on the kind of knowledge." Journal of Intelligent Manufacturing 20(5): 501.
9.Han, J., et al. (2000). Mining frequent patterns without candidate generation. Acm Sigmod Record, ACM.
10.Hand, D. J. (2007). "Principles of data mining." Drug safety 30(7): 621-622.
11.Hoang, D. B. and L. Chen (2010). Mobile cloud for assistive healthcare (MoCAsH). Services Computing Conference (APSCC), 2010 IEEE Asia-Pacific, IEEE.
12.Koh, H. C. and G. Tan (2011). "Data mining applications in healthcare." Journal of healthcare information management 19(2): 65.
13.Kumar, S., et al. (2010). Method and apparatus for retail data mining using pair-wise co-occurrence consistency, Google Patents.
14.Lin, K. W., et al. (2016). "A Disk-Based Mining Algorithm for Frequent Pattern Discovery from Big Data in Distributed Computing Environments." 網際網路技術學刊 17(6): 1259-1268.
15.Marston, S., et al. (2011). "Cloud computing—The business perspective." Decision Support Systems 51(1): 176-189.
16.Park, J. S., et al. (1995). An effective hash-based algorithm for mining association rules, ACM.
17.Pasquier, N., et al. (1999). Discovering frequent closed itemsets for association rules. International Conference on Database Theory, Springer.
18.Pei, J., et al. (2001). Prefixspan: Mining sequential patterns efficiently by prefix-projected pattern growth. icccn, IEEE.
19.Petre, R.-S. (2012). "Data mining in cloud computing." Database Systems Journal 3(3): 67-71.
20.Sabarish, K. and R. Shaji (2014). A scalable cloud enabled mobile governance framework. Global Humanitarian Technology Conference-South Asia Satellite (GHTC-SAS), 2014 IEEE, IEEE.
21.Sen, J. (2015). Security and privacy issues in cloud computing. Cloud Technology: Concepts, Methodologies, Tools, and Applications, IGI Global: 1585-1630.
22.Sun, G. and J. Shen (2014). "Facilitating social collaboration in mobile cloud-based learning: a teamwork as a service (TaaS) approach." IEEE Transactions on Learning Technologies 7(3): 207-220.
23.Tang, K., et al. (2008). "Context-based market basket analysis in a multiple-store environment." Decision Support Systems 45(1): 150-163.
24.Thelwall, M., et al. (2010). "Data mining emotion in social network communication: Gender differences in MySpace." Journal of the American Society for Information Science and Technology 61(1): 190-199.
25.Wu, J., et al. (2015). "Enabling Adaptive High-Frame-Rate Video Streaming in Mobile Cloud Gaming Applications." IEEE Trans. Circuits Syst. Video Techn. 25(12): 1988-2001.
26.Yen, S.-J. and A. L. Chen (2001). "A graph-based approach for discovering various types of association rules." IEEE Transactions on Knowledge & Data Engineering(5): 839-845.
27.Zaki, M. J., et al. (1997). Evaluation of sampling for data mining of association rules. Research Issues in Data Engineering, 1997. Proceedings. Seventh International Workshop on, IEEE.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top