參考文獻
1.土壤及地下水污染整治網-技術資訊:http://ww2.epa.gov.tw/SoilGW/page09/page09_01.asp
2.王一雄,1997,土壤環境污染與農藥,明文出版社,台北。
3.王明光,2000,土壤環境礦物學,藝軒圖書,台北。
4.李炳楠,樓基中,賴俊谷,1999,以濕式氧化法處理 2,4-二氯
酚水溶液之研究,中華民國環境工程學會第二十四屆廢水處理技
術研討會論文集,pp.335-340。
5.李炳楠,樓基中,顏伯宗,2000,以觸媒濕式氧化法處理 2,4-
二氯酚水溶液之研究(I),第二十五屆廢水處理技術研討會,
pp.563-568。
6.林正雄,1992,「利用微波加熱陶瓷的原理」,陶業,第11卷,第4期,pp.52-58。
7.林錕松、翁御棋、黃鈺軫、薛凱安、楊耀文、王鴻博(1998),2-
氯酚超臨界濕式氧化反應 CuO/ZSM-5觸媒之 EXAFS研究,第廿
十三屆廢水處理技術研討會論文集,pp.597-601。
8.金钦汉,1999,微波化學,北京科學出版社。
9.金相燦,1998,環境毒性有機物污染化學,淑馨出版社,台北,pp.
98- 104。
10.許員豪、王明光、王一雄,2000,蒙特石及至蛭石吸持十六烷基
三甲銨形成有機黏粒機制之探討,土壤與環境,3(2): 113-120。
11.許雄淙,1993,濕式氧化法處理高濃度含氰廢液之研究,
國立台灣大學環境工程研究所碩士論文。
12.陳仲仁,1999,「微波加熱的原理、構造、應用與研究」,食品工
業月刊,第31卷,第7期,pp.31-41。
13.陳仲仁,2001,「微波基本特性」,食品工業月刊,第33卷,第1期,pp.65-72。
14.張碧芬、鄭興、袁紹英、王一雄,1993,「三種氯酚化合物在環境
中消失及其對地下水污染之評估」,中國環境工程期刊 第三卷,
pp.209-215
。
15.陳秋萍,2001,以親有機性台灣土壤為吸附質去除氯酚,國立屏
東科技大學環境工程與科學系碩士論文。
16.廖巾萱,2002,有機黏土對苯胺與鎘雙重吸附機制之研究, 國立
屏東科技大學環境工程與科學系碩士論文
17.蔡禎輝、黃廷位、張志振,1999,「微波加熱原理與應用」,電力
電子應用,pp.65-96。
18.鍾人傑、凌永健,有機污染土壤之整治復育技術,軍品科技新
知109期,pp.61~74。
19.顏駿翔(2001,6),添加 Mn/γ-Al2O3於觸媒濕式氧化程序處
理2,4-二氯酚水溶液之研究,國立中山大學環境工程研究所碩
士論文。
20.Boyd, S. A., M. M. Mortland, and C. T. Chiou. 1988. Sorption
characteristics of organic compounds in hexadecyltrimethyl
ammonium-smectite. Soi. Sci. Soc. Am. J., 52, 652-657.
21.Boyd S.A., S.Shaobai, J.F. Lee, and M.M. Mortland, 1988.
Pentachlorophenol sorption by organio-clay. Clays clay
miner. 36: 125-130.
22.Chen, Y. S., G. Y. Chen, and M. T. Lee, 1997. Adsorptive
mechanism of Cadmium ion on the surface of Aluminum Oxide
and soil. J. Chiyai Ins. Tec. 53, 71-80.
23.Chowdhury A.K., and W.C. Copa, 1996. Wet Air Oxidation of
Toxic and Hazardous Organics in Industrial Wastewater.
Indian Chemical Engineer. , Vol.28, No.3, 3-11.
24.Debellefontaine H., S. Crispel, P. Reilhac, F. Périé, and J. N. Foussard , 1999. Wet Air Oxidation (WAO) for The Treatment of Industrial Wastewater and Domestic Sludge. Design of Bubble Column Reactors. Chemical Engineering Science, Vol.54, 4953-4959.
25.Debellefontaine H., and J. N. Foussard , 2000. Wet Air Oxidation for The Treatment of Industrial Wastes. Chemical Aspects, Reactor Design and Industrial Applications in Europe. Waste Management, Vol.22, 15-25.
26.Deiber G., J.N. Foussard, and H. Debellefontaine , 1997. Removal of Nitrogenous Compounds by Catalytic Wet Air Oxidation Kinetic Study. Environment Pollution, Vol.96, 311-319.
27.Dentel, S.K., J.Y. Bottero, and K. Khatib, 1995. Sorption of tannic acid, phenol, and 2,4,5-trichlorophenol on organoclays. Wat. resour. 29: 1273-1280.
28.Esmer, K. 1998. Electrial conductivity of modified bentoniteand FT-IR spectroscopic investigations of some aromatic molecules adsorbed by bentonites. Mater. lett. 34: 398-404.
29.Fernando, C., and A. Member, 1989. Use of Tailored Bentonite for selective removal of organic pollutants. Journal of Environment Engineering.115:756-767.
30.George C. E., I. Jun, and J. Fan, 1991. Geramic Trans.
31.George C. E., G. R. Lightsey, I. Jun, and J. Fan, 1992. Environ. Porg.
32.Hamby, D.M., 1996. Site remediation techniques supporting environment restoration activities-a review. The science of the total environment 191, 203~224.
33.Hsu, Y.H., M.K. Wang, C.W. Pai, and Y.S. Wang, 2000. Sorption of 2,4-dichlorophenoxy propionic acid by organo-clay complexes. Appl. clay sci. 16: 147-159.
34.Huh, J. K., D. I. Song, and Y. W. Jeon, 1999. Dual-mode sorption model for single- and multisolute sorption onto organoclays. Sep. Sci. Technol., 34(4), 571-586.
35.Jaynes, W.F., and S.A. Boyd, 1991. Clay mineral type and organic compound sorption by hexadecyltrimethlyammonium-exchanged clays. Soil Sci. Soc. Am. J. 55: 43-48.
36.Jaynes, W. F., and G. F. Vance, 1996. BTEX sorption by organo-Clays: Cosorptive enhancement and equivalence of interlayer complexes. Soil Sci. Soc. Am. J. 60, 1742-1749.
37.Khaled, B., F. Larachi, S. Hamoudi, G. Turcotte, and A. Sayari, 1999. Inhibition and Deactivation Effects in Catalytic Wet oxidation of High-Strength Alcohol-Distillery Liquors . Ind. Eng. Chem.Res., Vol.38, 2268-2274.
38.Khan, Y., G.K. Anderson, and D.J. Elliott, 1999. Wet Oxidation of Activated Sludge. Wat.Res., Vol.33, NO.7, 1681-1687.
39.Klinghoffer, A. A., R. L. Cerro, and M. A. Abraham, 1998. Catalytic Wet Oxidation of Acetic Acid Using Platinum on Alumina Monolith Catalyst. Catalysis Today, Vol.40, 59-71.
40.Lagaly, G., 1982. Layer charge heterogeneity in vermiculites. Clays clay miner. 30: 215-222.
41.Li L., P. Chen, and E.F. Gloyna, 1991. Generalized Kinetic Model for Wet Oxidation of Orangic Compounds. AIChE J., Vol.37,1687.
42.Luck, F., 1999. Wet Air Oxidation: Past, Present and Future . Catalysis Today, Vol.53, pp.81-91.
43.Mantzavinos ,M., R. Hellenbrand, A. G. Livingston, and I.S. Metcalfe, 1997. Reaction Mechanisms and Kinetics of Chemical Pretreatment of Bioresistant Organic Molecules by Wet Air Oxidation . Water Sci. Tech., Vol. 35, No. 4, 119-127.
44.McGill, S.L., J.W. Walkiewicz, and G.A. Smyres. , 1988. The effect of power level on microwave heating of selected chemicals and minerals. In: Sutton, W.H. et al. Eds. , Mat. Res. Soc. Symp. Proc. Reno, NV, M 4.6(124).
45.Mortland, M.M., S. Shaobai, and S.A. Boyd. , 1986. Clay organic complexes as adsorbents for phenol and chlorophenols. Clays clay miner. 34, 581-585.
46.Rienks, J., 1998. Comparison of Results for Chemical and Thermal Treatment of Contaminated Dredged Sediments, Wat. Sci. Tech, 37: (6-7) 355-362.
47.Rivas, F.J., S.T. Kolaczkowski, F.J. Beltrán and D.B. mcLurgh , 1998. Development of a Model for the Wet Air Oxidation of Phenol Based on a Free Radical Mechanism . Chem. Eng. Sci., Vol. 53, No. 14, 2575-2586.
48.Saeid G., M. T. Bowers, H. Warren and B. Andrew, 1997. The efficiency of modified bentonite clays for removal of aromatic organics from wastes.Spil.Sci.Tech.Bull. 4:155-164.
49.Salvador, R. , B.Casal , M.Yates , M. Angeles Martin-Luengo , and E.Ruiz-Hitzky, 2002. Microwave Decomposition of A Chlorinated Pesticide(Lindane)Supported on Modified Sepiolites. Applied Clay Science,Vol,22,103-113.
50.Sheng, G., S. Xu, and S.A. Boyd, 1996. Mechanism(s) controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter. Environ. Sci.Technol. 30, NO. 5, 1553-1557.
51.Vansant, E.F., and A.Peeters, 1978. The exchange of alkylammo nium ions on na-laponite. Clays clay miner. 26: 279-284.
52.Viraraghavan, T., and K. Slough, 1999. Sorption of pentachloro- phenol on peat-bentonite mixtures. Chemosphere 39: 1487-1496.
53.Walkiewicz, J.W., G. Kazonich, and S.L. MacGill, 1998. Microwave heating characteristics of minerals and compounds,Minerals and Metallurgical Processing, 39:39-42.
54.Wightman, P.G., and J.B. Fei, 1999. Experimental study of 2,4,6-trichlorophenol and pentachlorophenol solubilities in aqueous solutions: derivation of a speciation-based chlorophenol solubility model. Appl. geochem.14: 319-331.
55.William C., J. Heimbuch, and P. Schaefer, 1988. Demonstration of Wet air Oxidation of Hazardous Waste. Incineration Hazardous Wastes, 261-269.
56.Xu, S., and S.A. Boyd, 1994. Cation exchange chemistry of hexadeyltrimethylammonium in a subsoil containg vermiculite. Soil. Sci. Soc. Am. J. 58: 1382-1391.
57.Xu, S., G. Sheng, and S.A. Boyd, 1997. Use of organoclays in pollution abatement. Adv. agron. 59: 25-61.
58.Zhang, Z.Z., D.L. Sparks, and N.C. Scrivner, 1993. Sorption and desorption of quaternary ammine cation on clays. Environ.sci. technol. 27: 1625-1631.
59.Zhu, H., L. Dauerman, H. Gu, and G. Windgass, 1992. Microwave Treatment of hazardous waste: removal of volatile and semi-volatile organic contaminants from soil, J. Microwave Power, 27(1): 23.
60.Zhu, H., L. Dauerman, H. Gu, and G. Windgasse, 1992. Microwave Treatment of hazardous waste: removal of volatile and semi-volatile organic contaminants from soil, J. Microwave Power, 27(1): 2
61.Zhu, L., B. Chen, and X. Shen, 2000. Sorption of phenol, p-Nitrophenol, and aniline to Dual—Cation organobentonites from water. Environ. Sci. Technol. 34, 468-475.