跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2025/09/01 09:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉正堯
研究生(外文):Cheng-yao Liu
論文名稱:殼管式熱交換器之熱傳最佳化設計
論文名稱(外文):The optimal design of the heat transfer in the shell-and-tube heat exchanger
指導教授:林大偉林大偉引用關係
指導教授(外文):David T.W. Lin
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:機電系統工程研究所碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:92
中文關鍵詞:殼管式熱交換器多重物理量簡易共軛梯度法最佳化設計
外文關鍵詞:STHEoptimal designFEMmultiphysicsSCGM
相關次數:
  • 被引用被引用:2
  • 點閱點閱:792
  • 評分評分:
  • 下載下載:62
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的為針對廣泛的應用於石化工業及一般食品、藥類、化學工業的殼管式熱交換器(Shell-and-Tube Heat Exchanger, STHE)發展一套最佳化數值設計方法,以電腦輔助分析軟體結合最佳化搜尋方法做最佳化設計(Optimal Design)以提高熱交換器之效能。最佳化之架構係以簡易共軛梯度法(Simplified Conjugate Gradient Method)作為最佳化搜尋之方法,再利用多重物理量(Multiphysics)之分析軟體COMSOL作為格點產生器及正向解之計算處理工具,並以此方式發展出一成功整合格點產生、正向解計算、及最佳化搜尋等最佳化設計步驟。
在熱交換器分析方面,研究中分別針對三維模型之溫度場進行探討,決定最適合之幾何形狀參數,以提出三維STHE殼管排列與大小之最佳化設計結果。設計參數是管排之間的距離與排列方式,目標函數是進口與出口之間的最大溫差,最佳化之目標為提升熱交換器的降溫性能,以達到最大熱交換的功用。在數值分析中,使用納維爾-斯托克斯方程(Navier-Stokes equations)與熱傳方程式(Heat transfer equation)作為統御方程式以求解熱交換器內部之壓力及溫度之分佈。
本研究結果顯示,結合簡易共軛梯度法(SCGM)與數值模擬,進行殼管式熱交換器之最佳化設計,可求得一組最佳化之溫度分佈。藉由最佳化過程中適當的殼管排列幾何參數,可有效達成設計目標,例如提升殼管熱交換的效率等,同時可提高熱交換器的性能。本研究以SCGM為最佳化之演算程式,用以尋找本研究探討圓形熱管在不同的距離參數作用下,對於整體熱交換性能的變化與影響。在三維的殼管式熱交換器設計過程中改善溫度分佈現象為應重視的關鍵。
The aim of this study is to develop an optimal numerical method on the design of the shell-and-tube heat exchanger which is widely used for the petrochemical industry, food industry, medicine industry and chemical industry et al.. The approach is to integrate the computer-aided analysis and optimization method, and then apply this approach to design and optimize the heat exchanger. The design purpose is to enhance the performance of the heat exchanger. The optimization framework consists of a grid generator, a direct solver, and a numerical optimizer. Herein, the Simplified Conjugated Gradient Method (SCGM) is employed to build the optimizer and the multiphsics code COMSOLis used to be the grid generator and direct solver. Among them, an interface program that integrating the optimizer and COMSOLis developed.
In analysis of the heat exchanger, this study investigates the temperature of the three dimensional model to decide the optimal geometric parameters of the STHE tube array and size. The design parameters are the distance between tubes and array type. The objective function is the maximum quantities of heat removal between the domain inlet and outlet of the heat exchanger. This study optimizes these to achieve the optimal performance. It also can improve the temperature distribution of the heat exchanger in the optimal design process. In analysis of the numerical code, the Navier-Stokes equation and the heat transfer equation which are employed as the governing equations to solve the temperature in the heat exchanger.
These results indicate that the optimal design of STHE which is combined with the SCGM and numerical simulation can obtain a largest heat removal. This approach can achieve various design goals by the optimization process of the appropriate geometric parameters of the shell and tube arrangement, such as increasing the efficiency of the heat exchange. To improve the performance is the key point in the three dimensional optimal design of STHE. In the future, to improve the overall efficiency, there should be established a thermal wind tunnel system and execute related experiments to verify the simulation. We also need to enhance the design parameters to reduce the other effects caused by heat transfer phenomena.
摘要 i
Abstract iii
誌謝 vi
表目錄 x
圖目錄 xi
符號索引 xiii
一、緒論 1
1-1 前言 1
1-2 熱交換器發展 2
1-3 熱交換器裝置與分類 4
1-4 殼管式熱交換器原理 6
1-5文獻回顧 8
1-6研究動機與目的 12
1-7本文架構 13
二、數值模型與邊界設定 21
2-1 模型介紹與基本假設 21
2-2 數值方法 27
三、最佳化設計 34
3-1 最佳化方法 35
3-1-1 共軛梯度法(CGM) 35
3-1-2 簡易共軛梯度法(SCGM) 36
3-2 簡易共軛梯度法與共軛梯度法的差異與優點 38
3-3 最佳化搜尋器架構 39
3-4 網格測試 39
四、結果與討論 45
4-1 初始模擬分析 45
4-2 最佳化目標函數 46
4-3 最佳化設計結果與討論 47
4-3-1 目標函數之結果與討論 49
4-3-2 設計變數之結果與討論 51
五、結論 82
5-1 結論 82
5-2 未來展望 83
參考文獻 85
個人簡歷 91
[1] Mueller, A. C., Condensers, Heat Exchanger Design Hand Book. Vol.3, Sec. 3.4, 1983.
[2] Colburn, A. P., A Method of Correlation Forced Convection Heat Transfer Data and Comparison with Fluid Friction, Trans. AIChE, Vol. 29, 174–210, 1933.
[3] Grimison, E. D., Correlation and Utization of New Data of Flow Resistance and Heat Transfer for Cross-Flow of Gases over Tube Banks, J., Heat Transfer, Vol. 59, No.7, 589-594, 1937.
[4] Donohue, D. A., Heat transfer and pressure drop in heat exchangers. Ind. Eng. Chem. 41 (11), 499–511, 1949.
[5] Kern, D. Q., Process Heat Transfer. McGraw-Hill, New York, 1950.
[6] Tinker, T. J., Heat Transfer, Vol. 80, 36-52, 1958.
[7] Tinker, T. J., Shell Side Characteristics of Shell and Tube Heat Exchangers, Parts 1, 2, and 3. General Discussion of Haet Transfer Proc. Institution of Mechanical Enginneers, London, 1951.
[8] Palen, J. W., Taborek, J., Solution of Shell Side Flow Pressure Drop and Heat Transfer by Stream Analysis Method, Chem Eng. Prog. Symp. Ser, Vol 65, No.92, 1969.
[9] Bell , k. J., Final Report of the Cooperative Research program on Shell-and-Tube Heat Exchangers, University of Delaware Eng. Exp., Sat. sull. 5, 1963.
[10] Bell, K. J., Exchanger Design Based on the Delaware Research Program, Petroleum Chemical Engineer, pp.26-36, 1960.
[11] TEMA Inc., Standard of Tubular Exchanger Manufacturers Association 6th. New York, 1978.
[12] TEMA Inc., Standards of the Tubular Exchanger Manufactures Association, 7th. New York, 1988.
[13] Fraas, A. P. and Ozisik, M.N., Heat Exchanger Design, John Wiley & Sons. New York, 1965.
[14] Palen, J. W., Heat Exchanger Source Book. Hemisphere Publishing Co., 1986.
[15] Taborek, J., Input Data and Recommended Practices, Heat Exchanger Design Handbook, HEDH, Vol. 3. sec.3.3, 1983.
[16] Taborek, J., Heat exchanger Design Handbook. Hemisphere Publishing Co., New York, 1996.
[17] Bell, K. J., Preliminary Design of Shell-and-Tube Heat Exchangers, Heat Exchanger Source Book, Edited by Palen, J.W., pp.107-128, 1986.
[18] Kays, W. M. and London, A. L., Compact Heat Exchanger. McGraw-Hill, 1993.
[19] Min-Soo Kim, Kwan-Soo Lee, Simon Song. Effects of pass arrangement and optimization of design parameters on the thermal performance of a multi-pass heat exchanger, International Journal of Heat and Fluid Flow, 29, 352–363, 2008.
[20] Hao Peng, Xiang Ling. Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms, Applied Thermal Engineering, 28, 642–650, 2008.
[21] W. M. Rosenhow, P. J. Hartnett. Handbook of Heat Transfer. McGraw-Hill, 1973.
[22] R. K. Shah, K. J. Bell. The CRC Handbook of Thermal Engineering. CRC Press, 2000.
[23] G. F. Hewitt. Heat Exchanger Design Handbook. Begell House, New York, 1998.
[24] K. Muralikrishna, U. V. Shenoy. Heat exchanger design targets for minimum area and cost, Chemical Engineering Research and Design, 78, 161–167, 2000.
[25] F. O. Jegede, G. T. Polley. Optimum heat exchanger design, Chemical Engineering Research and Design, 70 (A2), 133–141, 1992.
[26] D. Q. Kern. Process Heat Transfer. McGraw-Hill, New York, 1950.
[27] Jiangfeng Guo, Mingtian Xu, Lin Cheng. The application of field synergy number in shell-and-tube heat exchange. Applied Energy, 86, 2079–2087, 2009.
[28] Huang, C. H. and Wang, S. P., A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method. International Journal of Heat and Mass Transfer, vol. 42, 3387-3403, 1999.
[29] A. Trp, K. Lenic, B. Frankovic. Analysis of the influence of operating conditions and geometric parameters on heat transfer in water–paraffin shell-andtube
latent thermal energy storage unit. Appl. Therm. Eng, 26, 1830–1839, 2006.
[30] C. H. Cheng and M. H. Chang. Shape identification by inverse heat transfer method. ASME J, Heat Transfer, 125, 224-231, 2003.
[31] Xu, P., Zheng, J., Chen, H. and Liu, P., Optimal design of high pressure hydrogen storage vessel using an adaptive genetic algorithm. International Journal of Hydrogen Energy, vol. 30, 1-7, 2009.
[32] Sonmez, F. O., Shape optimization of 2D structures using simulated annealing. Computer Methods in Applied Mechanics and Engineering, vol. 196, 3279-3299, 2007.
[33] Jiangfeng Guo, Mingtian Xu, Lin Cheng. Optimization design of STHE by entropy generation minimization and genetic algorithm. Applied Thermal Engineering, 29, 2954–2960, 2009.
[34] Prabhata K. Swamee , Nitin Aggarwal, Vijay Aggarwal. Optimum design of double pipe heat exchanger. International Journal of Heat and Mass Transfer, 51, 2260–2266, 2008.
[35] F. T. Mizutani, F. L. P. Pessoa, E. M. Queiroz, S. Hauan, I. E. Grossmann. Mathematical programming model for heat exchanger network synthesis including detailed heat-exchanger design. 1. Shell-and-Tube exchanger design, Industrial & engineering chemistry research, vol. 42(17), 4019-4027, 2003.
[36] Jose M. Ponce-Ortega, Medardo Serna-Gonzalez, Arturo Jimenez-Gutierrez. Use of genetic algorithms for the optimal design of STHEs, Applied Thermal Engineering, 29, 203–209, 2009.
[37] C. H. Cheng and M. H. Chang. A simplified conjugate-gradient method for shape identification based on thermal data, Number. Heat Transfer, Part B 43, 489–507, 2003.
[38] Cheng, C. H. and Chang, M. H. Shape design for a cylinder with uniform temperature distribution on the outer surface by inverse heat transfer method. Int. J. Heat Mass Transfer, vol. 46, 101–111, 2003.
[39] Mushtaq I. Hasan, A. A. Rageb, M. Yaghoubi, Homayon Homayoni. Influence of channel geometry on the performance of a counter flow microchannel heat exchanger. International Journal of Thermal Sciences 48, 1607–1618, 2009.
[40] M. R. Hestenes, E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, vol. 49, 409-436, 1952.
[41] R. Fletcher, C. M. Reeves. Function minimization by conjugate gradients. Computer Journal, vol. 7, 149-154, 1964.
[42] I. Fried, J. Metzler. SOR vs conjugate gradients in a finite element discretization. International Journal for Numerical Methods in Engineering, vol. 12, 1329-1342, 1978.
[43] G. V. Reklaitis, A. Ravindran and K. M. Ragsdell. Engineering optimization-methods and applications. John Wiley & Sons, 1983.
[44] H. H. Lin, C. H. Cheng, C. Y. Soong, F. Chen, W. M. Yan. Optimization of key parameters in the proton exchange membrane fuel cell. Journal of Power Sources, vol. 162, 246-254, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top