跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/10/01 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王國豪
研究生(外文):WANG, KUO-HAO
論文名稱:透過靜電紡絲方法製備ZrO2纖維與Ce2O3-ZrO2纖維之特性研究
論文名稱(外文):Fabrication and characteristics of ZrO2 fiber and Ce2O3-ZrO2 fiber mats via electrospinning
指導教授:張偉國張偉國引用關係謝榮發
指導教授(外文):Wei-Kuo ChangJung-Fa Hsieh
口試委員:王振乾林春榮姚俊敏
口試委員(外文):Cheng-Chien WangChun-Rong LinJune- Min Yao
口試日期:2011-07-27
學位類別:碩士
校院名稱:遠東科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:70
中文關鍵詞:氧化鋯纖維靜電紡絲溶膠凝膠Ce2Zr2O7
外文關鍵詞:ZrO2 fiberelectrospinningsol-gelCe2Zr2O7
相關次數:
  • 被引用被引用:0
  • 點閱點閱:354
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要利用溶膠凝膠方式製備前驅物,藉由靜電紡絲裝置進一步製備成有機-無機複合纖維,所製備之複合纖維再利用煅燒方式將其聚合物分解,進一步製備純金屬氧化物纖維,本論文分為兩個主題進行。
第一主題:
我們使用四丁氧基鋯和硝酸氧鋯兩種不同的鋯前驅物,藉由polyvinyl pyrrolidone(PVP) 輔助電紡成奈米複合纖維,再經由高溫煅燒去除有機物而成氧化鋯纖維。以四丁氧基鋯為前驅物只要少量的PVP就能電紡出約250奈米直徑勻稱的複合纖維,經由煅燒的氧化鋯纖維直徑約200奈米。以硝酸氧鋯為前驅物需要較多量的PVP才能電紡出約200~500奈米直徑勻稱的複合纖維,再經由煅燒的氧化鋯纖維直徑約100~400奈米,並使用SEM、TG-DTA、FT-IR分析比較兩者複合纖維之特性及差異。

第二主題:
我們使用硝酸氧鋯和硝酸鈰所製作的複合前驅物,藉由polyvinyl pyrrolidone(PVP) 輔助電紡成奈米複合纖維,再經由高溫煅燒去除有機物而成金屬複合氧化物纖維,電紡出約600 nm ~ 2 µm的複合纖維,經煅燒700℃~800℃後可得些許中空管纖維,並利用SEM、TG-DTA、FT-IR分析複合纖維之特性及型態。

We have successfully to fabricate the metal oxide fibers via electrospinning method. Precursor of the fiber is a sol-gel which is made use of electrospinning installation to make into composite fibers. These composite fibers were calcined on atmosphere to decompose organic polymer and furthermore to from metal oxide fibers. There are two topics in this thesis.
The first topic:
We use Zirconium butylate and Zirconyl(IV) nitrate hydrate are two different Zirconium precursor by polyvinyl pyrrolidone (PVP) assisted electrospinning into nano-composite fibers. and then calcined to remove organic matter form zirconia oxide fiber by high-temperature. A Zirconium butylate precursor as long as the small amount of PVP of about 250 nm in diameter electrospinning symmetrical composite fibers, Zirconia fibers by calcined about 200 nm in diameter. Zirconyl(IV) nitrate hydrate as precursor amount of PVP to need more electrospinning about 200 to 500 nm in diameter symmetrical composite fiber. and then through calcined zirconia oxide fiber diameter of about 100 to 400 nm, using SEM, TG-DTA, FT-IR analysis and comparison of the two composite fiber characteristics and differences.
The second topic:
We use Zirconyl(IV) nitrate hydrate and Cerium(Ⅲ) nitrate hexahydrate precursor compound produced by polyvinyl pyrrolidone (PVP) assisted electrospinning into nano-composite fibers, and then through calcination to remove organic matter from metal composite oxide fiber diameter of about 600 nm ~ 2 µm. calcined 700℃ ~ 800℃ can get a little hollow fiber, and the use of SEM, TG-DTA , FT-IR analysis of the characteristics and type of nano-composite fibers.

誌謝............................................................................i
摘要..........................................................................iii
Abstract ......................................................................iv
目錄...........................................................................vi
表目錄.........................................................................ix
圖目錄..........................................................................x
1-1纖維簡介.....................................................................1
1-2 靜電紡絲纖維的製備..........................................................1
1-3 靜電紡絲製備奈米纖維........................................................2
1-3-1靜電紡絲簡介...............................................................2
1-3-2影響纖維的參數.............................................................3
1-4研究動機與目的...............................................................5
第二章 理論基礎與文獻回顧.......................................................6
2-1 ZrO2的特性與應用............................................................6
2-2 Ce2Zr2O7化合物..............................................................6
2-3 靜電紡絲的設備介紹..........................................................8
2-4 靜電紡絲有機前驅理論........................................................9
2-6靜電紡絲陶瓷前驅物組成介紹..................................................15
第三章 實驗流程................................................................19
3-1實驗方法....................................................................19
3-2 實驗設備...................................................................20
3-3 實驗藥品...................................................................21
3-4 實驗步驟...................................................................22
3-4-1 有機化合物(zirconium butylate)溶膠凝膠合成製備纖維.......................22
3-4-2 無機化合物(Zirconyl(IV) nitrate hydrate)溶膠凝膠合成製備纖維.............22
3-4-3 Ce/Zr化合物複合借助聚合物PVP溶膠凝膠合成製備複合材料纖維.................22
3-5鑑定儀器原理及分析..........................................................23
3-5-1 X光粉末繞射儀(X-ray Powder Diffractometer,簡稱XRD)......................25
3-5-2 傅立葉轉換紅外線光譜儀...................................................27
3-5-3差熱熱重分析儀(TG - DTA)..................................................29
第四章 結果與討論..............................................................31
4-1 靜電紡絲ZrO2纖維..........................................................31
4-1-1有機金屬化合物(zirconium butylate)為前驅物................................31
4-1-2靜電紡絲及纖維SEM圖.......................................................33
4-1-3 TG –DTA分析.............................................................39
4-1-4 FT-IR分析................................................................40
4-2-1 製備前驅物sol-gel........................................................42
4-2-2 SEM分析..................................................................42
4-2-3 TG-DTA分析...............................................................46
4-2-4 XRD......................................................................47
4-2-5 FT-IR分析................................................................48
4-2-6 小結.....................................................................50
4-3 靜電紡絲Ce2O3-ZrO2纖維.....................................................51
4-3-1 製備無機金屬Ce/Zr化合物為前驅............................................51
4-3-2 SEM分析..................................................................51
4-3-3 TG-DTA分析...............................................................56
4-3-4 XRD分析..................................................................58
4-3-5 FT-IR光譜分析............................................................59
4-3-6 UV/Vis光譜分析...........................................................60
第五章 總結論..................................................................61
後期展望.......................................................................62
參考文獻.......................................................................63
簡 歷..........................................................................69


表目錄
表4-1醋酸添加30min後變化.......................................................32
表4-2 sol-gel調配參數..........................................................34
表4-3有機金屬化合物纖維化學成分分析............................................38
表4-4無機金屬化合物纖維化學成分分析............................................45
表4-5 Ce/Zr無機金屬化合物纖維化學成分分析......................................55


圖目錄
圖1-1熔融型靜電紡絲裝置圖.......................................................2
圖1-2 工作距離不足造成之形態影響 (a)纖維堆疊膠黏 (b)纖維溶劑未甩乾堆疊形成薄膜..5
圖2-1 靜電紡絲系統 (a)系統裝置簡要圖 (b)實際裝置圖..............................9
圖2-2原理圖 (a)液滴在內部產生內應力以及在注射器尾部形成重力、表面張力及靜電力 (b)噴甩後泰勒錐彎曲不穩定鞭甩遠視圖...............................................11
圖3-1實驗與儀器鑑定流程圖......................................................19
圖3-2靜電紡絲設備示意圖........................................................20
圖3-3電子槍設備圖..............................................................23
圖3-4 SEM構造圖................................................................24
圖3-5 X-ray繞射原理示意圖 .....................................................26
圖3-6繞射圖形半高寬圖 .........................................................27
圖3-7傅立葉轉換紅外線光譜儀示意圖..............................................29
圖4-1攪拌30 min後 圖左為SA-5、圖中為SA-10、圖右為SA-15.........................32
圖4-2 靜電紡絲不同聚合物濃度SEM圖(a) PZ-0 (b) PZ-1 (c) PZ-2 (d) PZ-3 (e) PZ-4 (f) PZ-5 (g) PZ-6..............................................................35
圖4-3 有機化合物纖維不同煅燒溫度結果(a)未煅燒前(b)煅燒400℃持溫5小時(c)煅燒500℃持溫5小時(d)煅燒1000℃持溫5小時................................................36
圖4-4有機金屬化合物纖維SEM圖...................................................37
圖4-5有機金屬化合物纖維EDS分析圖...............................................37
圖4-6有機化合物纖維DT-TGA......................................................39
圖4-7有機化合物纖維FT-IR (a) PVP(b) Zr/PVP composite fiber (c) 600℃持溫5h (d) 700℃持溫5h (e) 800℃持溫5h (f) 900℃持溫5h。4-1-2無機化合物(Zirconyl(IV) nitrate hydrate)前驅物.........................................................41
圖4-8無機化合物前驅配製流程圖..................................................42
圖4-9有機化合物纖維不同溫度煅燒圖(a)未煅燒前(b)煅燒600℃持溫5小時(c)煅燒700℃持溫5小時(d)煅燒900℃持溫5小時。...................................................43
圖4-10無機金屬化合物纖SEM圖....................................................44
圖4-11無機金屬化合物纖維EDS分析圖..............................................44
圖4-12無機化合物纖維TG-DTA.....................................................46
圖4-13無機化合物纖維XRD (a)未煅燒前(b) 600℃持溫5h (c) 700℃持溫5h (d) 800℃持溫5h (e) 900℃持溫5h (f) 1000℃持溫5h。..........................................47
圖4-14 無機化合物纖維FT-IR (a) PVP (b)無機化合物纖維(c) 600℃持溫5h (d) 700℃..49
圖4-15製備流程圖...............................................................51
圖4-16 PVP/CeZr化合物纖維 (a) 5000倍率 (b) 10000倍率...........................52
圖4-17經600℃煅燒後5小時之CeO3-ZrO2纖維 (a) 15000倍率 (b) 30000倍率............52
圖4-18經700℃煅燒後5小時之CeO3-ZrO2纖維 (a) 5000倍率 (b) 20000倍率.............52
圖4-19經800℃煅燒後5小時之CeO3-ZrO2纖維(a) 2000倍率 (b) 7000倍率...............53
圖4-20 Ce/Zr無機金屬化合物纖維SEM圖............................................54
圖4-21 Ce/Zr無機金屬化合物纖維EDS分析圖........................................54
圖4-22 PVP DT-TGA..............................................................56
圖4-23 Ce/Zr化合物纖維TG-TGA曲線圖.............................................57
圖4-24 Ce/Zr化合物纖維XRD圖(a) CeO3-ZrO2纖維(b)600℃ (c) 700℃(d) 800℃(e) 900℃(f) 1000℃ 煅燒5小時......................................................58
圖4-25 FT-IR光譜分析(a) PVP (b)未煅燒之CeZr/PVP化合物纖維......................59
圖4-26纖維煅燒各溫度點UV/Vis 光譜圖...........................................60




[1].吳大誠 杜仲良 高緒珊 編著,奈米纖維,五南文化事業, (2004)。
[2].小形信男,纖維學會誌,,Vol. 64,(2008) pp. 23-36。
[3].A. Formhals, U.S. Patent 1975504, (1934).
[4].T. Subbiah, G.S. Bhat, R.W. Tock, S. Pararneswaran, and S.S. Ramkumar, Electrospinning of Nanofibers, J. Appl. Polym. Sci., Vol. 96 ,(2005) pp. 557-69.
[5].F. Ochanda, and W.E. Jones, Fabrication and Thermal Analysis of Submicron Silver Tubes Prepared from El-ectrospun Fiber Template, Langmuir, Vol. 23, (2007) pp. 795-801
[6].S. Madhugiri, B. Sun, P.G. Smirniotis, J.P. Ferraris, K.J. Balkus, Electrospun mesoporous titanium dioxide fibers, Microporous and Mesoporous Materials, Vol. 69, (2004) pp. 77-83.
[7].W. Jia, L. Su, Y. Ding, A. Schempf, Y. Wang, and Y. Lei, Pd/TiO2 nanofibrous membranes and their application in Hydrogen Sensing, J. Phys. Chem. C, Vol. 113,(2009) pp. 16402-16407.
[8].熊炳昆 林振漢等編著,二氧化鋯製備工藝與應用,冶金工業出版社,(2008)。
[9].S. Inoue, H. Oki, Z. hagiwara, The nature of thethermal decomposition products of zirconium salts, J. Inorg. Nucl. Chem, Vol. 37, (1975) pp. 926- 936
[10].E. Crucean, and B. Rand, Clacination of Zirconia Gels, Trans. J. brit. Ceram. Soc., Vol. 78, (1979) pp. 58-64
[11].M.A. Blesa, A.J. G. Maroto, S.I. passaggio, N.E. Fingiolia, and G. Rigotti, Hydrous zirconium dioxide: interfacial properties, the formation of monodisperse spherical particles, and its crystallization at high temperatures, J. Mater. Sci., Vol. 20, (1985) pp. 4601-4609.
[12].王零森 編著,特種陶瓷,長沙:中南工業大學出版社,(2000)。
[13].M. Francisco, L. Willa, and D.M. John, Chemical interactions promoting the ZrO2 tetragonal stabilization in ZrO2–SiO2 binary oxides[J] , J Am Ceram Soc, Vol. 83, (2000) pp. 1506-1512.
[14].尹衍生、李嘉 編著,氧化鋯陶瓷及其複合材料,第一版 北京:化學工業出版社,(2003)。
[15].郭海珠、余森 編著,實用耐火原料手冊,北京:中國建材工業出版社, (2000).
[16].林振漢 編著,氧化鋯材料在結構陶瓷的應用技術、現狀和發展 , 稀有金屬快報,Vol. 6, (2004) pp. 6-10。
[17].T. Baidya, M.S. Hegde, and J. Gopalakrishnan , Oxygen–Release /Storage Properties of Ce0.5M0.5O2 (M: Zr, Hf) Oxides: Interplay of Crystal Chemistry and Electronic Structure, J. Phys. Chem. B, Vol. 111, (2007) pp. 5149–5154.
[18].S.N. Achary, S.K. Sali, N.K. Kulkarni , P.S. Ram Krishna, A.B. Shinde, and A.K. Tyagi, Intercalation / Deintercalation of Oxygen: A Sequential Evolution of Phases in Ce2O3 /CeO2-ZrO2 Pyrochlores, Chem. Mater., Vol. 21, (2009) pp.5848-5859.
[19].W. Sigmund, J.H. Yuh, H. Park et al. , Processing and Structure Relationships in Electrospin- ning of Ceramic Fiber System, J . Am. Ceram. Soc., Vol.89, (2006) pp. 395-407.
[20].M.M. Hohman, M. Shin, G. Rutledge, and M.P. Brenner, Electrospinning and Electrically Forced Jets. I. Stability Theory, Phys. Fluids., Vol. 13, (2001) pp.2201-2220.
[21].M.M. Hohman, M. Shin, G. Rutledge, and M.P. Brenner, Electrospinning and Electrically Forced Jets. II. Applications, Phys. Fluids., Vol. 13, (2001) pp. 2221-2236 .
[22].Y.M. Shin, M.M. Hohman, M.P. Brenner, and G.C. Rutledge, Electrospinning:A Whipping Fluid Jet Generates Submicron Polymer Fibers , Appl. Phys. Lett. , Vol. 78, (2001) pp. 1149-51.
[23].D.H. Reneker, A.L. Yarin, H. Fong, and S. Koombhongse, Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning, J. Appl. Phys., Vol. 87, (2000) pp. 4531-47.
[24].Y.M. Shin, M.M. Hohman, M.P. Brenner, and G.C. Rutledge, Experimental Characterization of Electrospinning: The Electrically Forced Jet and Instabilities, Polymer, Vol. 42, (2001) pp. 9955-9967.
[25].A.F. Spivak and Y.A. Dzenis, Asymptotic Decay of Radius of a Weakly Conductive Viscous Jet in an External Electric Field, Appl. Phys. Lett., Vol. 73, (1998) pp. 3067-3069.
[26].A.F. Spivak, Y.A. Dzenis, and D.H. Reneker, A Model of Steady State Jet in the Electrospinning Process,Mech. Res. Commun., Vol. 27, (2000) pp. 37-42.
[27].S.V. Fridrikh, J.H. Yu, M.P. Brenner, and G.C. Rutledge, Controlling the Fiber Diameter During Electrospinning, Phys. Rev. Lett., Vol. 90, pp. 144502.
[28].H. Park , and Ph. D. Thesis, University of Florida, (2005).
[29].M. Muthukumar , Dynamics of polyelectrolyte solutions, J. Chem. Phys., Vol. 107, (1997), pp. 2619-2635.
[30].M. Rubinstein, R.H. Colby, and A.V. Dobrynin, Dynamics of semidilute polyelectrolyte solutions,Phys. ReV. Lett., Vol.73, (1994) pp. 2776-2779.
[31].A.V. Dobrynin, R.H. Colby, M. Rubinstein, Scaling theory of polyelectrolyte solutions, Macromolecules Vol. 28,(1995) pp. 1859-1871.
[32].S.P. Chen, and L.A. Archer, Relaxation dynamics of salt-free polyelectrolyte solutions using flow birefringence and rheometry, Part B: Polym. Phys., Vol. 37, (1999) pp. 825-835.
[33].W.E. Krause, J.S. Tan, and R.H. Colby, Semidilute solution rheology of polyelectrolytes with no added salt, J. Polym. Sci. , Part B: Polym. Phys., Vol. 37,(1999) pp. 3429-3437.
[34].L.M. Zhang, Y.B. Tan, and Z.M. Li, Application of a new family of amphoteric cellulose-based graft copolymers as drilling-mud additives, Colloid Polym. Sci.,Vol. 277, (1999) pp. 1001-1004.
[35].R.S. Fernandes, G. Gonzalez, E.F. Lucas, Assessment of polymeric flocculants in oily water systems, Colloid Polym. Sci., Vol. 283, (2005) pp. 375-382.
[36].E.R. Kenawy, and Y.A.G. Malmoud, Biologically active polymers, 6: Synthesis and antimicrobial activity of some linear copolymers with quaternary ammonium and phosphonium groups, Macromol. Biosci., Vol. 3,(2003) pp. 107-116.
[37].I. Cakmuk, Z. Ulukanli, M. Tuzcu, S. Karabuga, and K. Genctav, Synthesis and characterization of novel antimicrobial cationic polyelectrolytes, Eur. Polym. J., Vol. 40, (2004) pp. 2373-2379.
[38].J.C. Grunian, J.K. Choi, and A. Lin, Antimicrobial Behavior of Polyelectrolyte Multilayer Films Containing Cetrimide and Silver, Biomacromolecules, Vol. 6, (2005) pp. 1149- 1153.
[39].S.C. Smedt, J. Demeester, and W.E. Hennink, Cationic Polymer Based Gene Delivery Systems, Pharm. Res., Vol. 17, (2000) pp. 113-126.
[40].M. Pabon, J. Selb, and F. Candau, Dynamics of a High Molecular Weight Polyelectrolyte, Langmuir , Vol. 14, (1998) pp. 735-737.
[41].D.C. Boris, and R.H. Colby, Rheology of Sulfonated Polystyrene Solutions, Macromolecules, Vol. 31, (1998) pp. 5746-5755.
[42].M. Yamaguchi, M. Wakutsu, Y. Takahashi, and I. Noda, Viscoelastic properties of polyelectrolyte solutions. 1. Zero-shear viscosity, Macromolecules, Vol. 25, (1992) pp. 470-474.
[43].M. Yamaguchi, M. Wakutsu, Y. Takahashi, and I. Noda, Viscoelastic properties of polyelectrolyte solutions. 2. Steady-state compliance, Macromolecules, Vol. 25, (1992) pp. 475-478.
[44].F. Bordi, R.H. Colby, C. Cametti, L. De Lorenzo, and T. Gill, Electrical Conductivity of Polyelectrolyte Solutions in the Semidilute and Concentrated Regime: The Role of Counterion Condensation, J. Phys. Chem. B, Vol. 106, (2002) pp. 6887-6893.
[45].R.H. Colby, D.C. Boris, W.E. Krause, and J.S. Tan, Polyelectrolyte conductivity, J. Polym. Sci., Part B: Polym. Phys., Vol. 35,(1997) pp. 2951-2969.
[46].H. Fong, I. Chun, and D.H. Reneker, Beaded nanofibers formed during electrospinning, Polymer, Vol. 40, (1999) pp. 4585-4592.
[47].D.H. Reneker, and I. Chun, Nanometer diameter fibers of polymer, produced by electrospinning, Nanotechnology, Vol. 7, (1996) pp. 216-223.
甲、D. Li, and Y. Xia, , Electrospinning of nanofibers: Reinventing the wheel?, AdV. Mater., Vol. 16, (2004) pp. 1151-1170.
[48].P. Gibson, H. Schreuder-Gibson, and D. Rivin, Transport properties of porous membranes based on electrospun nanofibers, Colloids Surf. A., Vol. 187-188, (2001) pp. 469-481.
[49].K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y.S. Seo, B.S. Hsiao, B. Chu, and M. Hadjiargyrou, Control of degradation rate and hydrophilicity in electrospun non-woven poly(d,l-lactide) nanofiber scaffolds for biomedical applications, Biomaterials, Vol. 24, (2003) pp. 4977-4985.
[50].E.R. Kenawy, G.L. Bowlin, and K. Mansfield, Release of tetracycline hydrochloride from electrospun poly (ethylene–co–vinylacetate) , poly (lactic acid) , and a blend, J. Controlled Release., Vol. 81, (2002) pp. 57-64.
[51].H. Yoshimoto, Y.M. Shin, H. Terai, J.P. Vacanti, A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials, Vol. 24, (2003) pp. 2077-2082.
[52].X. Wang, C. Drew, S.H. Lee, K.J. Senecal, J. Kumar, and L.A. Samuelson , Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors , Nano Lett., Vol. 2, (2002) pp.1273-1275.
[53].C.L. Casper, N. Yamaguchi, K.L. Kiick, and J.F. Rabolt, Functionalizing Electrospun Fibers with Biologically Relevant Macromolecules, Biomacromolecules, Vol. 6, (2005) pp. 1998-2007.
[54].T. Subbiah, G.S. Bhat, R.W. Tock, S. Parameswaran, and S.S. Ramkumar, Electrospinning of nanofibers, J. Appl. Polym. Sci., Vol. 96, (2005) pp. 557-569.
[55].Z. Zong, K. Kim, D. Fang, S. Ran, S. Ran, B. Hsiao, and B. Chu, Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer, Vol. 43, (2002) pp. 4403-4412.
[56].M.M. Demir, I. Yilgor, E. Yilgor, and B. Erman, Electrospinning of polyurethane fibers, Polymer, Vol. 43, (2002) pp. 3303-3309.
[57].Z. Jun, H. Hou, A. Schaper, J.H. Wendroff, and A. Greiner, Poly-L-lactide nanofibers by electrospinning -Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology, e-Polym., no. 009, (2003).
[58].C. Mit-uppatham, M. Nithitanakul, and P. Supaphol, Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter, Macromol. Chem. Phys., Vol. 205, (2004) pp. 2327-2338.
甲、W.K. Son, J.H. Youk, T.S. Lee, and W.H. Park, The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers, Polymer, Vol. 45, (2004) pp. 2959-2966.
[59].W.K. Son, J.H. Youk, T.S. Lee, and W.H. Park, Effect of pH on electrospinning of poly(vinyl alcohol), Mater. Lett., Vol. 59, (2005) pp. 1571-1575.
[60].L. Li, and Y.L. Hsieh, Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid), Polymer, Vol. 46, (2005) pp. 5133-5139.
[61].F. Boulmedais, B. Frisch, O. Etienne, Ph. Lavalle, C. Picart, J. Ogier, J.C. Voegel, P. Schaaf, and C. Egles, Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials, Biomaterials, Vol. 25, (2004) pp. 2003- 2011.
[62].段洪昌,固態物理學,台北:復文書局,(1993)。
[63].陳陵援編著,儀器分析,三民書局,(2002)。
[64].王世敏、許祖勛、傳晶 編著/陳憲偉校訂,奈米材料原理與製備,五南文化事業,(2004)。
[65].林敬二,林宗義審譯,儀器分析 下冊,美亞書版股份有限公司,(1994)
[66].汪建民主編,材料分析,中國材料科學學會,(2006)。
[67].M.A. Blesa, A.J. G. Maroto, S.I. Passaggio, N.E. Figliolia and G. Rigotti, Hydrous zirconium dioxide: interfacial properties, the formation of monodisperse spherical particles, and its crystallization at high temperatures, J. Mater. Sci., Vol. 20, pp 4601-4609.
[68].G. Rao, and H.R. Sahu, XRD and UV-Vis diffuse reflectance analysis of CeO2–ZrO2 solid solutions synthesized by combustion method, Indian Acad. Sci. (Chem. Sci.), Vol. 113, (2001) pp. 651.
[69].Z.C. Orel, and B. Orel, Phys. Status Solidi B, Vol. 186, (1994) pp. 33.
[70].R. Si, Y.W. Zhang, S.J. Li, B.X. Lin, and C.H. Yan, Urea-based hydrothermally derived homogeneous nanostructured Ce1-xZrxO2 (x = 0-0.8) solid solutions: a strong correlation between oxygen storage capacity and lattice strain, J. Phys. Chem. B., Vol. 108, (2004) pp. 12481-12488.
[71].S.J. Schmieg, and D.N. Belton, Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst, Appl. Catal. B. Environ., Vol. 6, (1995) pp. 127.
[72].Y.F. Zhang, J.Y. Li, Q. Li, L. Zhu, X.D. Liu, X.H. Zhong, J. Meng, and X.Q. Cao*, Preparation of CeO2–ZrO2 ceramic fibers by electrospinning, J. Colloid Interface Sci., Vol. 307, (2007) pp. 567-571

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊