跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.141) 您好!臺灣時間:2025/10/09 11:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李卓諭
研究生(外文):CHO-YU Li
論文名稱:含氟低介電常數材料及自行衍生法應用在抗反射層之研究
論文名稱(外文):Fluorine-modified low-K materials and autocloning method utilizing in antireflection techniques
指導教授:鄭劭家陳學禮陳學禮引用關係
指導教授(外文):C. C. ChengH. L. Chen
學位類別:碩士
校院名稱:中華大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:147
中文關鍵詞:低介電常數材料光阻底部抗反射層自行衍生法太陽能電池
外文關鍵詞:low-KBARCAutocloningSolar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:902
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文的架構主要區分為三大部分,第一部分是研究低介電常數材料(low K)的光學和電的特性,我們利用高密度電漿化學氣相沉積(high density plasma chemical vapor deposition,HDPCVD)機台,沉積出摻雜氟的SiOC:H(F-SiOC:H)的薄膜。在光學特性上我們會探討在短波長(157 &193nm) 的折射率(refractive index)、消光係數(extinction coefficient)與反射率(reflectance)分別可寫為n、k與R%,而當高反射率的材料底部塗佈我們的low K介電質薄膜F-SiOC:H,能輕易將高反射率的光阻或業界常用金屬材料的表面反射率降到1%,也就是說low K介電質薄膜F-SiOC:H亦可以當作很好的BARC(bottom antireflective coatings),而不需要像一般的low K材料,還需要在low K上鍍一層抗反射層膜。而在成份分析上我們利用傅立葉轉換紅外吸收光譜儀(Fourier Transform Infrared spectrometry,簡稱FTIR) 和XPS(X-ray Photo-electron Spectroscopy),來量測並確認薄膜的成份。而在low K的電性方面,則是利用汞探針(Hg probe) 量測CV Curve以及利用Shadow mask製做成電極再用CV analyzer量測系統,量測出CV Curve來加以計算出介電常數(K)值,而最低的F-SiOC:H的K值,可以到達2.07。 在利用自行衍生法製作抗反射結構方面,我們以實驗上藉由微影製程將六方最密堆積圖形轉到矽晶圓上,經過反應式離子蝕刻後,再把晶圓的表面蝕刻成金字塔結構,再利用HDPCVD將自行衍生法光學薄膜沉積在金字塔結構上形成折射率漸變的多層膜,並由實驗得知的自行衍生法的光學薄膜厚度,將此薄膜厚度再採用Couple wave 的 方式來模擬出反射頻譜,並且與實驗的反射頻譜結果相互印證。 另一方面則是關於利用自行衍生法所製作出的抗反射結構的光學特性,應用到太陽能電池上的部份。實驗的設計主要是在太陽能電池電極的製作方面,我們的曝光機台是採用Leica e-beam(電子束直寫系統),總共用了三道E-beam的圖檔,第一道為Contact Hole,第二道是finger狀電極,第三道是finger狀電極上的hole。我們將對太陽能電池電極的製程規劃流程,來加以詳細的進行探討。
This thesis is divided into three parts mainly. The first part is the optical and electrical properties of the low dielectric constant (K) films, Fluorine-modified organosilicate glass (F-SiOC:H) films, deposited by HDPCVD (high density plasma chemical vapor deposition). The refractive index, extinction coefficient and reflectance of these films with various deposition conditions had been measured. These films could reduce the back reflection from the interfaces of photoresist/high reflective materials to less than 1% at 193 nm. The F-SiOC:H low K films can be regarded as good BARC (bottom antireflective coatings). Hence, no further BARC structure was needed for patterning low dielectric materials in advanced interconnection processes. The chemical bonds of F-SiOC:H films are analyzed by FTIR (Fourier Transform Infrared Spectrometry) and XPS (X-ray Photo-electron Spectroscopy) for composition reorganization. The dielectric constant K had been deduced by the CV curve measured by Hg-probe technology and by a real capacitor device on chip. The minimum K of the F-SiOC:H films deposited in this thesis can be reached 2.07. The second part is the stacked texture SiNOx anti-reflection films on silicon, which was fabricated in autocloning method. The films structure with gradient index variation had been designed by couple wave method. The simulation results for 2D stacked films matched well to the experimental results in this work. The reflection reduced to 1% for sub-wavelength periodic 2D structure. The simulation results for 3D stacked films also marched well to the experimental results in previous work. The third part is the process scheme and masks design for further application to anti-reflection films of autocloning method for solar cell. The exposing machine adopts e-beam direct writer system, three exposing masks were applied in prossing.
目錄論文摘要………………………………………………………………-1-誌謝……………………………………………………………………-5-目錄……………………………………………………………………-7-表目錄………………………………………………………………..-10-圖目錄………………………………………………………………...-11-第一章 序論……………………………………………………………1 1-1 low K概述…………………………………………………….....1 1-2自生衍生法應用在抗反射層概述…………………………........2 1-3電極應用在太陽能電池之概述………………………………....3 1-4論文架構………………………………………………………....3 第二章 文獻回顧……………………………………………………….5 2-1 low K的應用發展…………………………………………..……5 2-2 太陽能電池原理和結構…………………………………………9 2-3 二維週期結構激發表面電漿…………………………………...11 第三章 利用高密度電漿化學氣相法沉積low K _F-SiOC:薄膜…....14 3-1 研究動機與方向………………………………………………...14 3-2 製程設備、步驟、參數和流程…………………………………17 3-2.1電漿優點與HDPCVD之特性簡介……………………….17 3-2.2 汞探針在介電薄膜特性的量測原理……………………19 3-2.3 XPS的量測原理簡介…………………………………....20 3-2.4實驗藥品與HDPCVD製程參數和步驟……….……….21 3-3 F-SiOC:H的實驗結果分析……..……………..………………25 3-3.1 F-SiOC:H成分分析……………………………………...25 3-3.2 F-SiOC:H介電常數值分析………………………….......39 3-3.3 F-SiOC:H光學特性分析………………………………...47 3-4結果與討論……………………………………………………..64 第四章 抗反射結構之多層膜設計模擬與實驗……………………..69 4-1抗反射結構之多層膜設計模擬………………………………..69 4-2實驗流程以及藥品與設備……………………………………..85 4-2.1實驗藥品與設備………………………………………….85 4-2.2實驗流程圖……………………………………………….86 4-3 HDPCVD之特性與離子轟擊………………………………….86 4-4實驗結果與討論……………………………....………………...89 第五章 電極的設計與增進量子效率的方法………………………..102 5-1 研究動機與方向……………………………………………….102 5-2 太陽能電池的實驗設備和參數設定……………………….....106 5-3 太陽能電池實驗流程和製程步驟…………………………….113 第六章 結論與未來展望……………………………………………..121 參考文獻………………………………………………………………125
[1] “International Technology Roadmap for Semiconductor,” 2006 Updated (Lithography and Interconnect sections). [2] S. K. Jangjing et. al., J. Appl. Phys. 94 (2003) 732. [3]H.J Kim , Q, Shao , Y.H. Kim.Surface and coatings Technology 171 (2003) 39-45. [4] F.M. Yang , T.C. Chang , P.T. Liu , C.W. Chen ,Y.H. Tai , ,J.C Lou. Nuclear Instruments and Methods in Physics Research B237 (2005) 301 306. [5] Y.H. Yu , S.C. Lee , C.S. Yang , C. K. Choi. Journal of the Korean Physical Society,Vol.42.No5.May 2003 [6] G. Das , G. Mariotto , A. Quaranta .Materials Science in Semiconductor Processing 7 (2004) 295-300. [7] S.K. JangJean , C.P. Liu , Y.L. Wang ,W.S. Hwang , W.T. Tseng ,S.W Chen , K.Y. Lo.Thin Solid Films 447-448(2004) [8] S.K. JangJean , C.P. Liu , Y.L. Wang ,W.S. Hwang , W.T. Tseng. Thin Solid Films 469-470(2004) [9] A. Humbert , L. Mage , C. Goldberg , K. Junker , L. Proenca , J.B. Lhuillier. Microelectronic Engineering 82 (2005)399 404. [10]C. Moysan , R. Riedel , R. Harshe , T. Rouxel ,F. Augereau. Journal of the European Ceramic Society 27(2007)397-403. [11]M. Fayolle , J. Torres , G. Passemard , F. Fusalba , G. Fanget , D. Louis. Microelectronic Engineering 64(2002) 35-42. [12]郭建億,深次微米世代微影技術底部抗反射層與奈米粒子選區成長之研究,國立清華大學(2003) [13]A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, Appl. [14] T. J. Kim, T. Thio, T. W. Ebbesen, D. E. G]rupp, and, H. J. Lezec, Opt. Lett. 24, 256 (1999). [15] T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and, H. J. Lezec, Opt. Lett. 24, 256 (1999). [16] T. Thio, H. F. Ghaemi, H. J. Lezec,; P. A. Wolff, T. W. Ebbesen, J. Opt. Soc. Am. B 16, 1743 (1999). [17] Donald A. Neamen ,Semiconductor Physics& Decices,李世鴻譯,台商圖書有限公司。 [18] A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, Appl. Phys. Lett. 81, 4327 (2002). [19] D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and Tineke Thio, Appl. Phys. Lett. 77, 1569 (2000). [20] Hong Xiao 著, 張鼎張、羅正忠譯, 半導體製程技術導論, 台灣培生出版股份有限公司,台北市, (2002)。 [21] A. Krishnan, T. Thio, T. Kim, J. H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001). [22] A. Krishnan, T. Thio, T. Kim, J. H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001). [23] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998). [24] A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, Appl. Phys. Lett. 81, 4327 (2002). [25] R. H. Ritchie, Phys. Rev. 106, 874 (1957) [26] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Heidelberg, 1988) [27]許永隆,利用微結構光學薄膜增進太陽能電池量子效率之研究,私立中華大學(2006) [28]R. Kumar ,T.K.S. Wong , N. Singh. Microelectronic Engineering 71(2004) 125 132. [29] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature (London) 391, 667 (1998). [30] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998). [31] H. Bethe, Phys. Rev. 66, 163 (1944) [31] C.C. Chen, IEEE Trans. Microwave Theory Tech. 18, 627(1970). [32] T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and, H. J. Lezec, Opt. Lett. 24, 256 (1999). [33] T. Thio, H. F. Ghaemi, H. J. Lezec,; P. A. Wolff, T. W. Ebbesen, J. Opt. Soc. Am. B 16, 1743 (1999). [34] D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and Tineke Thio, Appl. Phys. Lett. 77, 1569 (2000). [35] A. Krishnan, T. Thio, T. Kim, J. H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Opt. Commun. 200, 1 (2001). [36] B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck, and K. J. Malloy, J. Opt. Soc. Am. A 19, 1352 (2002). [37] J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, Phys. Rev. B 68, 201306 (2003). [38]汞探針量測系統及其在介電值薄膜特性分析上之應用簡介,國家奈米元件實驗室 [39]羅光旭著“太陽能電池技術現況與展望”經濟部能委會 [40] T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys. Lett., 77(16), 2613–2615, (2000). [41] 許宏達著“(半導體科技 NO.29, 2002/7)” [42] 莊嘉琛 編譯,太陽能工程-太陽電池篇,全華科技圖書股份有限公司,台北市,(2006) [43] 劉繼文、賴明志、戴寶通,低介電常數材料機械性質之研究,國家奈米元件實驗室 [44] 吳欣怡,先進low k製程介紹,工業技術研究院 [45] 盧慶儒,系統晶片設計與佈局45奈米製程後的大門 [46] Kannan Meera, Chang Sil Yang and Chi Kyu Choi, Bonding Structure and Electrical Properties of SiOC(-H) Films Deposited with a Methyltrimethoxysilane Precursor by Using Inductively Coupled Plasma Chemical Vapor Deposition, (Received 20 November 2005) [47] THE ORETICAL AND EXPERIMENTAL ANALYSIS OF THE LOW DIELECTRIC CONSTANT OF FLUORINATED SILICA [48] Tatsuru Shirafuji,Yoshiyasu Nishimura,Kunihide Tachibana, Plasma polymerization of fluorocarbon thin films on high temperature substrate and its application to low-K films,Thin Solid Films 515(2007)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文