跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 02:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭雲謙
研究生(外文):Yun-Chien Cheng
論文名稱:編碼波形於脈衝反相基頻影像之應用
論文名稱(外文):The applications of coded waveforms in pulse inversion fundamental imaging
指導教授:李百祺
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:76
中文關鍵詞:微氣泡對比劑脈衝反相基頻技術壓縮濾波器對比解析度軸向解析度
外文關鍵詞:Microbubble contrast agentsPulse inversion fundamental imagingCompression filterContrast to tissue ratioAxial resolution
相關次數:
  • 被引用被引用:2
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
醫用超音波影像中,微氣泡對比劑常用於增加血液灌流區和組織的對比度。微氣泡在特定聲場作用下,會因共振而產生比生物組織更強的非線性訊號,脈衝反相技術利用這樣的特性,分別激發兩次相位相差180度的反相訊號,將二回波相加以消除線性成分而保留非線性成分。若取出相加後殘餘訊號之基頻部分成像,則稱為脈衝反相基頻成像技術(pulse inversion fundamental imaging)。先前之研究已證實此方法比傳統的基頻影像或是二次諧波影像有更好的血液灌流區對組織對比解析度。本研究將進一步應用編碼波形中的高斯啾聲脈衝在脈衝反相基頻影像上,以拉長脈衝的方式取代提升脈衝峰值來增加脈衝能量,可提升影像之訊雜比且避免破壞氣泡與組織,然後利用壓縮濾波器壓縮回波訊號,恢復因脈衝拉長而下降之軸向解析度。利用模擬與仿體實驗,本論文討論壓縮濾波器、聲壓、微氣泡粒徑分佈和載波等因素對於壓縮氣泡脈衝反相基頻訊號之影響。本研究發現,根據壓縮濾波器設計原理,濾波器無法壓縮含有過多非線性成分之波形,所以本研究嘗試的四種濾波器中,軸向解析度的回復程度最多也只有傳統基頻影像壓縮的一半不到。此外,設計濾波器時要求越寬,壓縮後產生之高頻雜訊與近場旁瓣越小,反而能夠得到較好的對比解析度。拉長脈衝則可使訊雜比提高,啾聲載波中初始頻率變化大的頻率漸增、寬頻的載波則能產生較大的脈衝反相基頻訊號,這些都能提升對比解析度。微氣泡粒徑方面,半徑和脈衝頻率相對應的氣泡有很強的共振訊號,所以接近特定半徑的氣泡越多,得到的對比度越好。本研究顯示,使用接近共振半徑之微氣泡對比劑、高聲壓頻率漸減之寬頻高斯啾聲長脈衝、並以限制寬鬆的濾波器壓縮脈衝反相基頻訊號,可以得到最好的對比解析度與軸向解析度。未來希望以單氣泡實驗取得更具體的微氣泡散射訊號和氣泡特性參數,希望能設計出成功壓縮效能更好的非線性壓縮濾波器。
In medical ultrasound imaging, micro bubble contrast agents are used to improve the contrast between blood perfusion region and soft tissue. Micro bubble oscillation produces stronger nonlinear response than tissue. Pulse inversion (PI) imaging excites two phase inverted pulses and sums the echoes to cancel the linearly propagated signal and keep the nonlinear components. The imaging keeping fundamental part of residue by filtering is called PI fundamental imaging. Generally, PI fundamental imaging has better contrast to tissue ration than traditional fundamental imaging and second harmonic imaging. In this research, we use chirp excitation, which is one of coded waveforms as an attempt to improve CTR by increasing pulse length and maintain the axial resolution by received pulse compression. In this study, chirp excitation is applied to pulse inversion fundamental imaging and the effects of pulse, acoustic pressure, bubble radius, and compression filters on imaging compression are discussed. However, because the compression filter is designed assuming linear propagation, the range side lobe becomes significant in PI fundamental imaging because the signal is from the nonlinear response. The less strict filter constraint produces less high frequency noise and lower range side lobe in compression. By linear compression, the axial resolution recovery of PI fundamental image is 50 % less than fundamental image. Chirps with big initial frequency change such as frequency increasing or broad bandwidth chirp produce strong PI fundamental signal. Contrast agents having more bubbles with oscillation radius scatter stronger nonlinear signal. All of these increase image CTR. To sum up, using contrast agents with oscillation radius, Gaussian chirps, having high amplitude, decreasing frequency, and broad bandwidth, and less strict constraint filter can get image with best CTR and axial resolution. Our future work will focus on single bubble experiments and alternative pulse compression filter design.
摘要
英文摘要
第一章 緒論 1
1.1 超音波對比劑影像 1
1.2 對比劑脈衝反相基頻影像 4
1.3 研究動機與目標 6
1.4 論文架構 7

第二章 原理 8
2.1 脈衝反相基頻影像 8
2.1.1 微氣泡對比劑非線性訊號 8
2.1.2 組織非線性訊號 9
2.1.3 非線性成像方法 11
2.1.4 脈衝反相基頻成像方法 12
2.2 高斯啾聲編碼波形 14
2.3 軸向旁瓣位準 16

第三章 壓縮濾波器 18
3.1 壓縮濾波器壓縮效能之比較 18
3.1.1 匹配濾波器 18
3.1.2 最佳化濾波器 20
3.1.3 PSL濾波器 21
3.1.4 最小平方法濾波器 23
3.1.5 線性訊號與非線性訊號之壓縮 25
3.1.6 濾波器效能之比較 29
3.2 PSL濾波器之設計 32
3.3 討論 37

第四章 單氣泡模擬與實驗 38
4.1 單氣泡模擬(Bubble sim) 38
4.1.1 模擬模型 38
4.1.2 啾聲載波之發射週數 41
4.1.3 啾聲載波之頻率調變 45
4.1.4 啾聲載波與弦波載波 47
4.1.5 聲場強度 48
4.3 討論 49

第五章 多氣泡模擬與實驗 50
5.1 多氣泡模擬 50
5.1.1 模擬架構 50
5.1.2 微氣泡粒徑分佈與基頻訊號壓縮 54
5.1.3 微氣泡粒徑分佈與衝反相基頻訊號壓縮 57
5.1.4 聲場強度 58
5.2 多氣泡實驗 59
5.2.1 實驗架構 59
5.2.2 脈衝回波壓縮 62
5.2.3 脈衝長度 63
5.2.4 聲場強度 64
5.3 氣泡移動 66
5.4 討論 69

第六章 結果與討論 70

第七章 未來工作 72

參考文獻
[1] 李百祺教授,“醫用超音波原理講義.”
[2] 賴俊延, “超音波穴蝕效應於基因傳遞效率之研究,” 國立台灣大學電機工程學研究所碩士論文, 民國九十四年.
[3] W. J. Guan, “ Sub-micro contrast agent for high frequency ultrasound imaging system,” 2002.
[4] A. Y. Kim, B. I. Choi, T. K. Kim, K. W. Kim, J. Y. Lee, and J. K. Han, “Comparison of contrast-enhanced fundamental imaging, second-harmonic imaging, and pulse-inversion harmonic imaging,” Investigative Radiology, vol. 36, no 10, pp. 582-588, Oct. 2001.
[5] C. C. Shen and P. C. Li, “Pulse-inversion-based fundamental imaging for contrast detection,” IEEE Trans. on Ultrason., Ferroelect., Freq. Contr., vol. 50, no. 9 , pp. 1124-1133, Sep. 2003.
[6] M. O’Donnell, ”Coded excitation system for improving the penetration of real-time phased array imaging systems,” IEEE Trans. on Ultrason., Ferroelect., Freq. Contr., vol. 39, no. 3, pp. 341-351, May 1992.
[7] Y. Takeuchi, ”Coded excitation for harmonic imaging,” IEEE Ultrason. Symp., 1996, pp. 1433-1436.
[8] K. E. Morgan, J. S. Allen, P. A. Dayton, J. E. Chomas, A. L. Klibanov, and K. W. Ferrara, “Experimental and theoretical evaluation of micro-bubble behavior: effect of transmitted phase and bubble,” IEEE Trans. on Ultrason., Ferroelect., Freq. Contr., vol. 47, no. 6, pp. 1494-1509, Nov. 2000.
[9] L. Hoff, ”Nonlinear response of sonazoid. numerical simulations of pulse-inversion and sub-harmonics,” IEEE Ultrason. Symp., 2000, pp. 1885-1888.
[10] B. Haider and R. Y. Chiao, “Higher order nonlinear ultrasonic imaging,” IEEE Ultrason. Symp., 1999, pp. 1527-1531.
[11] P. Jiang, Z. Mao, and J. C. Lazenby, “A new tissue harmonic imaging scheme with better fundamental frequency cancellation and higher signal-to-noise ratio,” IEEE Ultrason. Symp., 1998, pp. 1589-1594.
[12] J. S. Bendat, “Nonlinear system analysis and identification from random data,” New York: Wiley, 1990.
[13] C. C. Shen, “Pulse inversion based ultrasonic nonlinear imaging,” Dissertation to the Graduate Institute of Electrical Engineering National Taiwan University, 2004, pp. 12.
[14] C. A. Chain, “Ultrasonic reflection mode imaging of the nonlinear parameter B/A:I.A theoretical basis,” J. Acoust. Soc. Amer., vol. 80, no. 1, pp. 28-32, July 1986.
[15] R. T. Beyer and S. V. Letcher, “Nonlinear acoustics,” New York: Academic, 1969, pp. 202-230.
[16] M. E. Haran and B. D. Cook, “Distortion of finite amplitude ultrasound in lossy media,” J. Acoust. Soc. Amer., vol. 73, no. 3, pp. 774-779, Mar. 1983.
[17] D. L. Miller, “Ultrasonic detection of bubbles by their second harmonic emissions”, Ultrasonics, Vol. 19, pp. 217-224, Sep. 1981.
[18] B. C. Eatock, and R. Y. Nishi, “Numerical studies of the spectrum of low intensity ultrasound scattered by bubbles,” J. Acoust. Soc. Amer., Vol. 77, pp. 1692-1701, 1985.
[19] A. Prosperetti, “Nonlinear oscillations of gas bubbles in liquids: cavitations ,” J. Acoust. Soc. Amer., Vol. 57, pp. 810-821, 1975.
[20] W. Lauterborn, “Numerical investigation of nonlinear oscillations of gas bubbles in liquids,” J. Acoust. Soc. Amer., vol. 59, pp. 283-293, 1976.
[21] K. A. Young, C. B. Ihn, and J. K. Han, “Comparison of contrast-enhanced fundamental imaging, second-harmonic imaging, and pulse-inversion harmonic imaging,” Investigative Radiology, vol. 36, iss. 10, Oct. 2001.
[22] D. E. Goertz, E. Cherin, A. Needles, and F. S. Foster, “High frequency nonlinear B-scan imaging of microbubble contrast agents,” IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 52, No. 1, pp.65-79, Jan. 2005
[23] C. K. Holland and R. E. Apfel, ”Fundamentals of the mechanical index and caveats in its application,” J. Acoust. Soc. Amer., vol. 105, issue 2, pp. 1324, Feb. 1999.
[24] S. W. Huang and P. C. Li, “Arbitrary waveform coded excitation using bipolar square wave,” IEEE Trans. on Ultrason., Ferroelect., Freq. Contr., vol. 53, Issue.1, pp. 106-116, Jan. 2006.
[25] L. Hoff, “Acoustic characterization of contrast agent for medical ultrasound imaging,” Dordrecht: Kluwer Academic Publishers, 2001, pp. 55-58.
[26] 賴寬裕, “以穴蝕效應為主之超音波治療, 誘發與偵測,” 國立台灣大學電機工程學研究所碩士論文, 民國九十三年.
[27] P. A. Dayton, A. Klibanov, G. Brandenburger, and K. Ferrara, “Acoustic radiation force in vivo: a mechanism to assist targeting of microbubbles,” Ultrasound in Med. & Biol., vol. 25, no. 8, pp. 1195–1201, Apr. 1999.
[28] P. A. Dayton, K. E. Morgan, A. L. Klibanov, G. Brandenburger, K. R. Nightingale, and K. W. Ferrara, “A preliminary Evaluation of the effects of primary and secondary radiation forces on acoustic contrast agents,” IEEE Trans. on Ultrason., Ferroelect., Freq. Contr., vol. 44,no. 6, pp. 1264-1276, Nov. 1997.
[29] C. C. Shen, P. C. Li, “Motion artifacts of pulse inversion-based tissue harmonic imaging,” IEEE Trans. on Ultrason. , Ferroelect., Freq. Contr., vol.49, issue. 9, pp. 1203-1211, Sep. 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top