跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/21 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬茂芳
研究生(外文):Mau-Fang Ma
論文名稱:非洲大蝸牛腹足肌肉高溫蛋白質水解物之分子量分布及其功能性探討
論文名稱(外文):Studies on the Molecular Weight Distribution and Characteristics of Retorted Protein Hydrolysate from Achatina fulica Foot Muscle
指導教授:黃雅玲黃雅玲引用關係
指導教授(外文):Ya-Ling Huang
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:水產食品科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:108
中文關鍵詞:非洲大蝸牛蛋白質水解物分子量分布膽固醇微膠粒抗氧化活性理化性質
外文關鍵詞:Achatina fulicaprotein hydrolysatesmolecular weight distributionantioxidant activitycholesterol-micellesphysicochemical properties
相關次數:
  • 被引用被引用:3
  • 點閱點閱:582
  • 評分評分:
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:1
本研究將非洲大蝸牛腹足肌肉經高溫(121℃, 15-90 min)萃取蛋白質水解物(retored Achatina fulica protein hydrolysates,RAFPH),其次再以高溫萃取60 min的水解物進一步用酵素(papain, tripsin, alcalase)水解,並分析其水解率、分子量分布、可溶性蛋白質、胜肽含量、抗氧化能力並測定體外膽固醇微膠粒瓦解、油脂吸附能力、乳化能力及起泡能力。經121℃加熱15-90 min所製備的蛋白質水解物,其水解率為74.4-78.0%。透過Superdex peptide 10/300管柱進行HPLC膠過濾分析,發現蛋白質水解物分子量主要分布在686-6,511 Da;而在可溶性蛋白質及胜肽含量方面,隨水解時間的延長亦逐漸增加。對於體外膽固醇微膠粒瓦解的影響,經由高溫萃取及三種酵素水解,與控制組比較後均有降低膽固醇微膠粒的濃度,顯示具有降低膽固醇吸收的能力。在理化特性評估方面,以高溫萃取15 min組的油脂吸附能力、乳化能力及起泡性較其他時間萃取組佳,分別為2.27 g、3.35 mL及62.9%,而高溫蛋白質萃取物再經酵素水解後,可能由於過度水解導致其理化性質均低於高溫萃取組。本實驗的高溫蛋白質萃取物皆具有良好抗氧化活性,包含清除DPPH自由基(86.6-91.8%)、抑制亞麻油酸氧化(94.1-98.2%)、總抗氧化能力(95.9-97.0%)及還原力值為0.360-0.407(OD 700 nm),在酵素水解方面則以papain及alcalase水解物的抗氧化能力優於trypsin水解組。
Protein hydrolysates from Achatina fulica foot muscle was extracted by high-temperature hydrolysis (121℃, 15-90 min) to obtain a retorted Achatina fulica protein hydrolysates (RAFPH). RAFPH obtained at 60 min was selected to further hydrolyzed with three enzymes (e.g. papain, tripsin, and alcalase) The RAFPH and enzymatic-treated RAFPH was analyzed for their degree of hydrolysis, molecular weight distribution, soluble protein, peptide content, antioxidant capacity, together with measurement of cholesterol-micelles disintegration , fat adsorption, emulsion capacity and foam capacity. The degree of hydrolysis of RAFPH obtained after 15−90 min hydrolysis reached about 74.4-78.0%. Using the gel filtration chromatography on a Superdex Peptide 10/300, the major molecule weight of protein hydrolysates was in the range of 686−6,511 Da. Soluble protein and peptide contents of the RAFPH were increased with prolonged hydrolysis time. For determination of In vitro disintegration of cholesterol in mixed micell, significant decreased concentrations of cholesterol-micelle was observed at high-temperature extraction as well as hydrolysis with papain, trypsin and alcalase, relative to control implying the ability to reduce cholesterol absorption. In the evaluation of physiochemical properties, fat absorption capacity, emulsifying capacity, foaming capacity of RAFPH obtained after hydrolysis for 15 min were better than the other, were as high as 2.27 g, 3.35 mL and 62.9%, respectively. The lower physicochemical properties of RAFPH digested with enzymatic hydrolysis relative to the RAFPH along is attributed to the excessive hydrolysis. This study revealed that all RAFPH was found to have a good antioxidant effect on 86.6-91.8% scavenging activity of DPPH radical, 94.1-98.2% inhibition ratio of linoleic acid oxidation, 95.9-97.0% trolox equivalent antioxidant capacity, and reducing power of 0.360-0.407 value (OD 700 nm). In addition, RAFPH treated with alcalase and papain had better antioxidant capacity than that trypsin treated RAFPH.
頁次
目錄…....................................I
表目錄…....................................V
圖目錄….........................................VII
中文摘要….......................................IX
英文摘要…..........................…………......................XI
誌謝…………………………………………………...…………...…XIII
壹、前…..........................……………………………………......1
貳、文獻整…..........................…….…………………………………….3
一、非洲大蝸....................................................3
二、抗氧化性...............................................6
(一)抗氧化物之作....................................................7
(二)抗氧化活性測.............................................................8
1. 清除DPPH自由基之能..............................................8
2. 螯合亞鐵離子之能力...............................................9
3. 還原力............................................................9
4. 抑制亞麻油酸氧化能力...........................................10
三、蛋白質水解物...................................................10
(一)蛋白質水解方式...........................................10
1. 化學水解方式...............................................10
2. 酵素水解方式..............................................12
3. 蛋白質酵素水解影響因子.......................................12
(二)蛋白質水解物功能特性...........................................15
(三)蛋白質水解物應用及發展.........................................19
四、生物活性胜肽............................................................20
(一)調節免疫活性胜肽.............................................21
(二)荷爾蒙調節胜肽.................................................21
(三)酵素調節及抑制胜肽..............................................21
(四)抗菌及抗病毒胜肽..............................................22
(五)神經活性胜肽....................................................22
(六)抗氧化胜肽..............................23
五、膽固醇吸收......................................................25
六、蛋白質的理化特性................................................26
(一)乳化性質.......................................................26
(二)起泡性質.......................................................27
(三)吸附油脂能力....................................................28
參、材料與方法.......................................................29
一、材料..........................................................29
(一)非洲大蝸牛原料.................................29
(二)藥品及儀器.....................................................29
1. 藥品............................................................29
2. 儀器.............................................................31
二、方法........................................31
(一)實驗設計......................................31
(二)試驗項目...............................................33
1. 高溫萃取非洲大蝸牛腹足肌肉蛋白質水解物...................33
2. 酵素水解非洲大蝸牛腹足肌肉高溫蛋白質水解物….....33
(三)分析方法....................................................33
1. 一般成分之測定....................................33
2. 可溶性蛋白質含量測定......................34
3. 水解率之測定....................................34
4. 胜肽含量的測定.......................................34
5. SDS-PAGE分析......................................35
6. 分子量大小的評估.................................36
7. 蛋白質水解物功能性評估...............................36
(1)清除DPPH自由基能力測定..............................36
(2)螯合亞鐵離子能力測定.......................38
(3)還原力測定............................................38
(4)抑制亞麻油酸氧化作用能力...............................39
(5)總抗氧化力測定............................................40
8. 體外膽固醇微膠粒瓦解測定.............................40
9. 理化性質測定................................................41
(1)油脂吸附能力..................................41
(2)起泡能力..................................................42
(3)乳化能力….................................................42
10. 統計分析....................................................43
肆、結果與討論.....................................................44
一、非洲大蝸牛腹足肌肉以高溫萃取蛋白質水解物之分子量及其功能性評估..........44
(一)高溫萃取非洲大蝸牛腹足肌肉蛋白質水解物之產率….........44
(二)高溫萃取非洲大蝸牛腹足肌肉蛋白質水解物之水解率及分子量分布...........47
(三)高溫萃取非洲大蝸牛腹足肌肉蛋白質水解物之可溶性蛋白與胜肽含量........52
(四)高溫萃取非洲大蝸牛腹足肌肉蛋白質水解物之抗氧化能力…………………….54
1. 清除DPPH自由基能力...................................54
2. 螯合亞鐵離子能力...................................57
3. 還原力................................................57
4. 抑制亞麻油酸氧化作用能力.............................60
5. 總抗氧化能力...............................................60
(五)高溫萃取非洲大蝸牛腹足肌肉蛋白質水解物對體外膽固醇微膠粒瓦解及其理化性質的影響..........................................64
1. 體外膽固醇微膠粒瓦解的影響……...................................64
2. 理化性質............................................66
二、酵素水解非洲大蝸牛腹足肌肉高溫蛋白質水解物的分子量
及其功能性評估.......................68
(一)酵素水解非洲大蝸牛腹足肌肉蛋白質水解物之水解率及分子量分布...........68
(二)酵素水解非洲大蝸牛腹足肌肉蛋白質水解物之可溶性蛋白與胜肽含量..........79
(三)酵素水解非洲大蝸牛腹足肌肉蛋白質水解物之功能性評估..................82
1. 清除DPPH自由基能力....................82
2. 螯合亞鐵離子能力......................84
3. 還原力.................................84
4. 抑制亞麻油酸氧化作用能力..........87
5. 總抗氧化能力.............................89
(四)酵素水解非洲大蝸牛腹足肌肉蛋白質水解物對體外膽固醇微膠粒瓦解及其理化性質的影響.......................................89
1. 體外膽固醇微膠粒瓦解的影響….......................................89
2. 理化性質.................................93
伍、結論….....................................................96
陸、參考文獻..............................................98

表 目 錄
表2-1、蛋白質水解物分子量的分布範圍.................................16
表2-2、蛋白質水解物之營養產物的理化性質和功能性.....................18
表2-3、抗氧化胜肽的來源..............................................24
表4-1、非洲大蝸牛腹足肌肉一般成分分析..........................45
表4-2、非洲大蝸牛腹足肌肉經121℃萃取不同時間後水解物的含氮量及其萃取率變化.............................................................46
表4-3、非洲大蝸牛腹足肌肉經121℃萃取不同時間水解物之分子量分布狀況........51
表4-4、非洲大蝸牛腹足肌肉經121℃萃取不同時間後水解物之可溶性蛋白與胜肽含量變化..................53
表4-5、非洲大蝸牛腹足肌肉經121℃萃取不同時間後水解物之總抗氧化能力.........62
表4-6、非洲大蝸牛腹足肌肉經121℃萃取15-90 min後水解物之抗氧化能力和水解率.................................................................63
表4-7、非洲大蝸牛腹足肌肉經121℃萃取不同時間後水解物對膽固醇微膠粒的影響.................................................................65
表4-8、非洲大蝸牛腹足肌肉經121℃萃取不同時間後水解物的理化性質分析....67
表4-9、以papain水解非洲大蝸牛腹足肌肉水解物RAFPH-60之分子量分布........73
表4-10、以trypsin水解非洲大蝸牛腹足肌肉水解物RAFPH-60之分子量分布........77
表4-11、以alcalase水解非洲大蝸牛腹足肌肉水解物RAFPH-60之分子量分布.......78
表4-12、以papain、trypsin及alcalase水解30 min非洲大蝸牛腹足肌肉水解物RAFPH-60所得之總抗氧化能力...................90
表4-13、以papain、trypsin及alcalase水解30 min非洲大蝸牛腹足肌肉水解物RAFPH-60所得之抗氧化能力和水解率..................................91
表4-14、以papain、trypsin及alcalase水解30 min非洲大蝸牛腹足肌肉水解物RAFPH-60對膽固醇微膠粒的影響...............92
表4-15、以papain、trypsin及alcalase水解30 min非洲大蝸牛腹足肌肉水解物RAFPH-60的理化性質...................................94

圖 目 錄
圖2-1、廣東住血線蟲生命週期...............................................................5
圖3-1、圖3-1、本實驗所用之非洲大蝸牛及其腹足肉.......................30
圖3-2、非洲大蝸牛腹足肌肉蛋白質水解物及其酵素水解物之實驗流程圖..........32
圖3-3、以Superdex peptide 10/300管柱分離不同標準品之滯留時間與分子量之關係.................................................................37
圖4-1、非洲大蝸牛腹足肌肉經121℃萃取不同時間後水解物之水解率變化..........48
圖4-2、非洲大蝸牛腹足肌肉經121℃萃取15-90 min後水解物之SDS-PAGE電泳圖....49
圖4-3、非洲大蝸牛腹足肌肉經121℃下萃取不同時間後水解物之Superdex peptide 10/300 column 層析圖..................................50
圖4-4、以不同濃度之121℃萃取60 min的非洲大蝸牛腹足肌肉水解物之DPPH清除率.............................................................55
圖4-5、非洲大蝸牛腹足肌肉經121℃萃取不同時間後水解物之DPPH清除率變化.....56
圖4-6、非洲大蝸牛腹足肌肉經121℃萃取不同時間後水解物螯合亞鐵離子能力變化...58
圖4-7、非洲大蝸牛腹足肌肉經121℃萃取不同時間後水解物還原力變化...59
圖4-8、非洲大蝸牛腹足肌肉經121℃萃取不同時間後水解物抑 制亞麻油酸氧化能力變化.........................................................61
圖4-9、非洲大蝸牛腹足肌肉水解物RAFPH-60經papain、trypsin及alcalase處理不同時間後酵素水解物之水解率變化...........69
圖4-10、非洲大蝸牛腹足肌肉RAFPH-60的不同酵素水解物之SDS-PAGE電泳圖.......70
圖4-11、非洲大蝸牛腹足肌肉水解物RAFPH-60以papain水解15、30、60 min後其Superdex peptide 10/300 column層析圖..........................72
圖4-12、非洲大蝸牛腹足肌肉水解物RAFPH-60以trypsin水解15、30、60 min後其Superdex peptide 10/300 column層析圖...................75
圖4-13、非洲大蝸牛腹足肌肉水解物RAFPH-60以alcalase水解15、30、60 min後其Superdex peptide 10/300 column層析圖.........................76
圖4-14、以papain、trypsin及alcalase水解不同時間之非洲大蝸牛腹足肌肉水解物RAFPH-60所得之胜肽含量..................80
圖4-15、以papain、trypsin及alcalase水解不同時間之非洲大蝸牛腹足肌肉水解物RAFPH-60所得之可溶性蛋白含量.......81
圖4-16、以papain、trypsin及alcalase水解30 min非洲大蝸牛腹足肌肉水解物RAFPH-60所得DPPH清除率........................83
圖4-17、以papain、trypsin及alcalase水解30 min非洲大蝸牛腹足肌肉水解物RAFPH-60所得之螯合亞鐵離子能力..........85
圖4-18、以papain、trypsin及alcalase水解30 min非洲大蝸牛腹足肌肉水解物RAFPH-60所得之還原能力..........................86
圖4-19、以papain、trypsin及alcalase水解30 min非洲大蝸牛腹足肌肉水解物RAFPH-60所得之抑制亞麻油酸氧化作用的能力....88
Adisakwattana1, S., Moonrat, J., Srichairat, S., Chanasit, C., Tirapongporn, H., Chanathong, B., Ngamukote, S., Mäkynen, K., & Sapwarobol, S. (2010). Lowering mechanisms of grape seed extract (Vitis vinifera L) and its antihyperlidemic activity. Journal of Medicinal Plants Research, 4, 2113–2120.
Adler-Nissen, J. (1986). “Enzymatic Hydrolysis of Food Protein” p.21 Eelserier Applied Science Publishers Ltd, Essex, England.
AOAC (1997). Kjeldahl method, Moisture, Gelatin, Dessert Preparations and Mixes. Official Method of Analysis (13th ed.). Association of Offical Analyical Chemists. Washington, D. C.
Arnao, M. B., Cano, A., Hernadez-Ruiz, J., Carcia-Canovas, F., & Acosta, M. (1996). Inhibition by L-ascorbic acid and other antioxidation catalyzed by peroxidase: a new approach for determining total antioxidant ststus of food. Analytical Biochemistry, 226, 255261.
Arora, R. C., Agarwal, N., Arora, S., & Pandey, A. (1992). Dietary cholesterol induced changes in serum lipoproteins in healthy females. Materia medica Polona, 24, 17–9.
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft Technologie, 28, 25–30.
Campbell, M. K. (1999). Biochemistry, 3rd edtion. (pp.95–96). Philadelphia: Saunders College Publishing.
Centers for Disease Control & Prevention, Angiostrongyliasis http://www.dpd.cdc.gov/dpdx/Html/Angiostrongyliasis.htm
Chalamaiah, M., Rao, G. N., Rao, D. G., & Jyothirmayi, T. (2010). Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties. Food Chemistry, 120, 652–657.
Chan, K. M., & Decker, E. A. (1994). Endogenous skeletal muscle antioxidants. Critical Reviews in Food Science and Nutrition, 34, 403–26.
Chen, H. M., Muramoto, K., Yamauch, F., Fujimoto, K., & Nokihara, K. (1998). Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein. Journal of Agricultural and Food Chemistry, 46: 49–53.
Chen, H. M., Muramoto, K., Yamauchi, F., & Nokihara, K. (1996). Antioxidant activity of design peptides based on the antioxidative peptide isolated from digests of a soybean protein. Journal of Agricultural and Food Chemistry, 44, 2619–23.
Church, F. C., Swaisgood, H. E., Porter, D. H., & Catignani, G. L. (1983). Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science, 66, 12191227.
Deeslie, W. D., & Cheryan, M. (1979). Enzyme-modified proteins: A new generation of functional food ingredients. Illinois Research, 21, 10.
Foh, M. B. K., Kamara, M. T., Amadou, I., Foh, B. M., & Wenshui, X. (2011). Chemical and Physicochemical Properties of Tilapia (Oreochromis niloticus) Fish Protein Hydrolysate and Concentrate. International Journal of Biological Chemistry, 15, 21–36.
Frokjaer, S. (1994). Use of hydrolysates for protein supplementation. Food technology, 48, 86–88.
Fujioka, K., Maeda, M., Hojo, T., & Sano, A. (1998). Protein release from collagen matrices. Advanced Drug Delivery Reviews, 31, 247–266.
Gildberg, A. (1993). Enzymatic processing of marine raw materials. Process Biochemistry, 28, 1–15.
Gill, I., Lopez-Fandino, R., Jorba, X., & Vulfson, E. N. (1996). Biologically active peptides and enzymatic approaches to their production. Enzyme and Microbial Technology, 18, 162–183.
Gimenez, B., Aleman, A., Montero, P., & Gomez-Guillen, M.C. (2009). Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid. Food Chemistry, 114, 976–983.
Godfrey, T., & West, S. (1996). Industrial Enzymoloy. Macmillan Press, London.
Godron, M. H. (1990). The mechanism of antioxidant action in vitro. In: BJF Hudson (editor). Food antioxidants (chaper 1. pp.1–18). London and New York: Elsevier Applied Science.
Halliwell, B., & Gutteridge, J. M. C. (1989). Free Radicals in Biology and Medicine, 2nd Edn. Free radicals, ageing, and disease (pp. 416–493). Oxford: Clarendon Press.
Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology, 11, 298–300.
Hassane, L., Justo, P., Julio, G. C., & Javier, V., & Francisco, M. (2005). Production of Lupinus angustifolius protein hydrolysates with improved functional properties. Grasas y Aceites, 56, 135–140
Hidalgo, J., & Gamper, E. (1977). Solubility and heat stability of whey protein concentrates. Journal of Dairy Science, 60, 1515–1518.
Hoyle, N. T., & Merritt, J. H. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59, 7679.
Jayaprakasha, G. K., Singh, R. P., & Sakariah, K. K. (2001). Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chemistry, 73, 285–290.
Je, J. Y., Park, P. J., & Kim, S. K. (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research Internationa, 38, 45–50
Je, J. Y., Qian, Z. J., Lee, S. H., Byun, H. G., & Kim, S. K. (2008). Purification and antioxidant properties of bigeye tuna (Thunnus obesus) dark muscle peptide on free radical-mediated oxidative systems. Journal of Medicinal Food, 11, 629–637.
Johansen, J. S., Harris, A. K., Rychly, D. J., & Ergul, A. (2005). Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovascular Diabetology, 4, 1–11.
Jost, R. & Monti, J. C. (1997). Partial enzymatic hydrolysis of whey protein by trypsin. Journal of Dairy Science, 60, 1387–1393.
Kejiang, H., Yong, L., Yi, Y., Peng, L., & Ling, Y. A. (2005). Dammarane glycoside derived from ginsenoside Rb3. Chemical Pharmaceutical Bulletin, 53, 177–179.
Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102, 1317–1327.
Kohama, Y., Oka, H., Kayamori, Y., Tsujikawa, K., Mimura, T., Nagase, Y., & Satake, M. (1991). Potent synthetic analogues of angiotensin-converting enzyme inhibitor derived from tuna muscle. Agricultural and Biological Chemistry, 55, 2169–2170.
Lahl, W. J., & Braun, S. D. (1994). Enzymatic production of protein hydrolysates for food use. Food technology, 48, 68–71.
Li, S. T. (1993). Collagen biotechnology and its medical applications. Biomedical Engineering, 5, 646–657.
Li, X. X., Han, L. J., & Chen, L. J. (2008). In vitro antioxidant activity of protein hydrolysates prepared from corn gluten meal. Journal of the Science of Food and Agriculture, 88, 1660–1666.
Mahmoud, M. I. (1994). Physicochemical and functional properties of protein hydrolysates in nutritional products. Food Technology, 48, 89–95.
Mahmoud, M. I., Malone, W. T., & Cordle, C. T. (1992). Enzymatic hydrolysis of casein: Effect of degree of hydrolysis on antigenicity and physical properties. Journal of Food Science, 57, 1223–1229.
Mandal, C., & Chowdhury, M. (1990). The polyclonal activation of lymphocytes and T cell mitogenicity by a unique sialic-acid-binding lectin from the hemolymph of Achatina fulica snail. Immunopharmacology, 20, 63–72.
Mandal, C., Biswas, M.,Nagpurkar, A., & Mookerjea, S. (1991). Isolation of a Phosphoryl choline-binding protein from the hemolymph of the snail, Achatina fulica. Developmental and Comparative Immunology, 15, 227–239.
Maruyama, S., Nakagomi, K., Tomizuka, N., & Suzuki, N. (1985). Angiotensin I-convertine enzyme inhibitor derived from a emzymic hydrolysate of casein. Agricultural and biological chemistry, 45, 1405–1409.
Marx, J. L. (1987). Assessing the risks of microbial release. Science, 237, 1413–1417.
Matoba, T. (2002). How does the radical-scavenging activity of soy protein food change during heating. Daizu Tanpakushitsu Kenkyu, 5, 47–50.
Megias, C., Pedroche, J., Yust, M. D. M., Alaiz, M., Julio Girón-Calle, J., Millán, F., & Vioque, J. (2009). Sunflower protein hydrolysates reduce cholesterol micellar solubility. Plant Foods for Human Nutrition, 64, 86–93.
Meisel, H., & FitzGerald, R. J. (2003). Biofunctional peptides from milk proteins: mineral binding and cytomodulatory effects. Current Pharmaceutical Design, 9, 1289–1295.
Meisel, H., & Schilmme, E. (1990). Milk proteins: precursors of bioactive peptides. Trends in Food Science & Technology, 8, 41–43.
Mendis, E., Kim, S. K., & Rajapakse, N. (2005). Antioxidant Properties of a Radical-Scavenging Peptide Purified from Enzymatically Prepared Fish Skin Gelatin Hydrolysate. Journal of Agricultural and Food Chemistry, 53, 581–587.
Miller, L. N., Rice-Evans, C. A., Dvies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant status in premature neonates. Clinical Science, 84, 407412
Mills, E. N. C., Alcocer, M. J. C., & Morgan, M. R. A. (1992). Biochemical interactions of food-derived peptides. Trends in Food Science and Technology, 3, 64–68.
Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Extraction and physico-chemical characterization of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids, 18, 581592.
Nagaoka, S., Futamura, Y., Miwa, K., Awano, T., Yamauchi, K., Kanamaru, Y., Tadashi, K., & Kuwata, T. (2001). Identification of novel hypocholesterolemic peptide derived from bovine milk β-lactoglobulin. Biochemical and Biophysical Research Communications, 281, 11–17.
Okamoto, A., Hanagata, H., Matsimoto, E., & Kawamura, Y. (1995). Angiotensin I converting enzyme inhibitory activities of various fermented foods. Bioscience, Biotechnology, and Biochemistry, 59, 1147–1149.
Osada, K., Kodama, T., Yamada, K., & Sugano, M. (1993). Oxidation of cholesterol by heating. Journal of agricultural and food chemistry, 41, 1198–1202.
Raederstorff, D. G., Schlachter, M. F., Elste, V., & Weber, P. (2003). Effect of EGCG on lipid absorption and plasma lipid levels in rats. The Journal of Nutritional Biochemistry, 14, 326332.
Roger, P. C. (1988). Distribution of monoamines within the central nervous system of the juvenile pulmonate snail, Achatina fulica. Brain Research, 460, 29–49
Saiga, A., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry, 51, 3661–3667.
Sarmadi, B. H., & Ismail, A. (2010). Antioxidative peptides from food proteins: a review. Peptide, 31, 1949–1956.
Searcy, R. L., & Bergquist, L. M. (1960). A new color reaction for the quantitation of serum cholesterol. Clinica Chimica Acta, 5, 192199.
Sen, G., & Mandal, C. (1995). The specificity of the binding site of AchatininH, a sialic acid-binding lectin from Achatina fulica. Carbohydrate Research, 268, 115–125
Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrinemulsion. Journal of Agricultural and Food Chemistry, 40, 945948.
Sugiyama, K., Egawa, M., Onzuka, H., & Oba, K. (1991). Characteristics of sardine muscle hydrolysates prepared by various enzymic treatment. Bull Japan Social Science Fish, 57, 475–479.
Sun, J., He, H., & Xie, B. J. (2004). Novel antioxidant peptides from fermented mushroom Ganoderma lucidum. Journal of agricultural and food chemistry, 52, 6646–6652.
Tsai, J. S., Chen, J. L., & Pan, B. S. (2008). ACE-inhibitory peptides identified from the muscle protein hydrolysate of hard clam (Meretrix lusoria). Process Biochemistry, 43, 743–747.
Turgeon, S. F., & Paquin, P. (1992). Emulsifying property of whey peptide fraction of pH and ionic strength. Journal of Food Science, 57, 601–604.
Willcox, J. K., Ash, S. L., & Catignani, G. L. (2004). Antioxidants and prevention of chronic disease. Critical Reviews in Food Science and Nutrition, 44, 275–295.
Wu, H. C., Chang, C. L., Pan, B. S., & Shiau, C. Y. (2005). Low-molecular-weight peptides as related to antioxidant properties of chicken essence. Journal of Food and Drug Analysis, 13, 176–183.
Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36, 949–957.
Xia, S. H., Wang, Z., & Xu, S.Y. (2007). Characteristics of Bellamya purificata snail foot protein and enzymatic hydrolysates. Food Chemistry, 101, 1188–1196.
Yamaguchi, R., Tatsumi, Y., Asano, M., Kato, K. & Yoshimitsu, U. (1988). Effect of metal salts and fructose on the autoxidation of methyl linoleate in emulsion. Agricultural and Biological Chemistry, 52, 849–850.
Yamauchi, K., Tomita, M., Giehl, T. J., & Ellison, R. T. (1993). Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infection and Immunity, 61, 719–728.
Yamin, W., Xuanwei, Z., Lu, L., Jie, L., Zinan, W., Geng, Y., Lingchuan H., Juan, L., Xiaofen, S., & Kexuan, T. (2010). An efficient transformation system of taxol-producing endophytic fungus EFY-21 (Ozonium sp.). African Journal of Biotechnology, 9, 1726–1733.
Yang, J. I., Ho, H. Y., Chu, Y. J., & Chow, C. J. (2008). Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food Chemistry, 110,128–136.
Yoshimi, K., Hiroyuki, M., Peter, T. M. K., Takashi, I., Kazuko, W., Kozo, F., Xia, P. S., Anchalee, Y., Kah, H. K., Philipp, N. L., Erlinda, T. N., Carmen, G. K., Hiroshi, T., & Kyosuke, N. (1989). Achatin-I, an endogenous neuroexcitatory tetraptide from achatina ferussac containing d-amino acid residue. Biochemical and Biophysical Research Communications, 160, 1015–1020.
Zainola, M. K., Abd-Hamida, A., Yusofb, S., & Musec. R. (2003). Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chemistry, 81, 575–581
Zhang, S. B., Wang, Z., & Xu, S. Y. (2008). Antioxidant and antithrombotic activities of rapeseed peptides. Journal of the American Oil Chemists' Society, 85, 521–527.
Zhang, Y., Muramoto, K., & Yamauchi, F. (1996). Hydrolysis of soybean proteins by a vortex flow filtration membrane reactor with Aspergillus oryzae proteases. Journal of Food Science, 61, 928–931.
王昌蓉(2003)。黑眼豆乳清粉末之起泡特性及其理化性質。碩士論文,國立臺灣海洋大學食品科學研究所。
王建龍(2002)。阿根廷魷及赤魷眼窩組織酵素水解物之抗氧化活性。碩士論文,國立臺灣海洋大學食品科學研究所。
王秋月(2006)。抗氧化配方製品對於大白鼠脂質代謝及抗氧化狀態之影響。碩士論文,臺北醫學大學保健營養學研究所。
王苑春(1996)。從臺灣土壤分離之高溫性麴菌Aspergillus sp. NTU-FC-671蛋白酶之研究。博士論文,國立臺灣大學農業化學研究所。
王鏡岩、朱聖庚、徐長法(2007)。生物化學。藝軒圖書出版社。
行政院衛生署(2009)。歷年死亡原因。衛生統計系列(一)死因統計。行政院衛生署。
行政院衛生署疾病管制局。人畜共通傳染病資訊網,http://web.cdc.gov.tw。
何心怡(2006)。海鱺魚皮明膠水解物之製備、分子大小評估及其抗氧化功能性之研究。碩士論文,國立高雄海洋科技大學水產食品科學研究所。
吳思敬、黃健政、張瑞郎(1995)。花生粕抗氧化活性之研究。中華生質能源學會會誌。14:95–100。
李秀、賴滋漢(1992)。食品分析與檢驗。富林出版社。
金蘭馨、黃秀珠、洪淑麗、陳文麗、陳秀華、鄭惠珍(1997)。營養學。永大書局。
胡忠恆、陶錫珍(1995)。臺灣現生貝類彩色圖鑑。國立自然科學博館。pp.49–150。
徐睿璟(2009)。吳郭魚皮高溫明膠水解物之製備與特性及其功能性之評估。碩士論文,國立高雄海洋科技大學水產食品科學研究所。
張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、嚴國欽、林志城、林慶文。(1995)。食品化學。國立編譯館。華香園出版社,pp.82–91。
張淑芬(2006)。澎湖仙人掌果抗氧化性之探討。碩士論文,國立中興大學食品暨應用生物科技學系研究所。
張家銘(2009)。Stenotrophomonas maltophilia PU-LS07角蛋白酶之純化與特性研究。碩士論文,靜宜大學食品營養研究所。
張智威(2007)。在模擬膽汁下探討膽固醇活動力值Ch AT與膽固醇結晶之間的關係。碩士論文,國立東華大學生物技術研究所。
章愛娣、勞國強(1996)。明膠生產工藝及設備。北京:中國輕工業出版社。
莊曉莉、李祥麟、黃檀溪(2003)。蠶蛹蟲草具有顯著之抗氧化性與自由基清除能力。師大學報:數理與科技類48:13–24。
莊子儀(2007)。牛蛙皮膠原蛋白與明膠之特性研究及高溫萃取明膠與其水解物功能性之評估。碩士論文,國立高雄海洋科技大學水產食品科學研究所。
陳怡宏(1999)。生物活性胜肽及其合成。食品工業月刊,31:1–8。
陳怡宏(2001b)。蛋白質酵素水解物與醫療調理營養。科學與科技,33:58–63。
陳俊成(2001a)。功能性水產蛋白。食品資訊,184:47–52。
陳鶴幸(2003)。本草綱目白話精解全書。薪傳出版社。pp. 1312–1314。
彭詩純(2003)。鯖魚肉酵素水解物之遊離胺基酸及胜肽與抗氧化性及苦味之關係。碩士論文,國立臺灣海洋大學食品科學研究所。
廖萱芹(2000)。家禽機械去骨肉之酵素水解物的製作及特性之研究。碩士論文,國立中興大學畜產學系。
漁業署(2009)。漁業生產量。民國九十八年漁業統計年報。漁業資訊服務網。行政院農委會漁業署。
臺灣貝類資料庫,http://shell.sinica.edu.tw。
劉世偉(2005)。攝取豆漿對於輕度高膽固醇血症受試者血脂質之影響。碩士論文,臺北醫學大學保健營養學系。
劉軒如(2004)。皂素產品與黑眼豆乳清粉末之乳化特性的影響因子及其對膽固醇可溶化的影響。碩士論文,國立臺灣海洋大學食品科學研究所。
蔡奇立(2001)。自然保育季刊。第36期,特有生物研究保育中心。pp.66–69。
鄭靜桂(1997)。蛋白質之水解與水解液之利用。食品工業月刊,29:10–17。
鄭名凡(1999)。蛋白質水解物的功能與應用。食品資訊,160:49–54。
鄭斯元(2005)。噴霧乾燥條件對鯖柴魚水解物胜肽活性之影響。碩士論文,國立臺灣海洋大學食品科學研究所。
鄭雅妮(2008)。鯙鰻酵素水解物之抗氧化活性及對血管升壓素轉換酶抑制效果之探討。碩士論文,國立臺灣海洋大學食品科學研究所。
穆理查 (2009)。虱目魚骨膠原蛋白及高溫明膠水解物之特性及其抗氧化活性。碩士論文,國立高雄海洋科技大學水產食品科學研究所。
賴慧民(2003)。由Bacillus cerus NTU-FC-11生產豬血塊分解酵素之研究。碩士論文,國立臺灣大學農業化學研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top