跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:唐啟家
研究生(外文):Chi-Chia Tang
論文名稱:從徑向接收函數及觸發型地震探討台灣之地殼構造
論文名稱(外文):The crustal structure of Taiwan from Radial Receiver Function and Triggered Tremor
指導教授:陳朝輝陳朝輝引用關係
指導教授(外文):Chau-Huei Chen
口試委員:陳朝輝張永孚黃柏壽林正洪馬國鳳王乾盈溫國樑
口試委員(外文):Chau-Huei ChenToung-Fo ChangBor-Shouh HaungCheng-Horng LinKuo-Fong MaChien-Ying WangKuo-Liang Wen
學位類別:博士
校院名稱:國立中正大學
系所名稱:地震研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:99
語文別:中文
論文頁數:133
中文關鍵詞:台灣地殼
外文關鍵詞:TaiwanCrustal structure
相關次數:
  • 被引用被引用:1
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我利用徑向接收函數和觸發型地震之定位探討台灣地區之地殼構造。從結果顯示,台灣地區的莫荷面深度分布介於21至46公里間。在台灣南部,歐亞大陸板塊大約是以近30度的傾角向東傾斜。此外,本研究也發現在台灣南部會有地震受到2004和2005二次的南亞大地震所觸發。
In order to provide some good references of the Taiwan orogeny process, I performed systematically surveys to investigate the crustal structure of Taiwan area. I utilized the H-k stacking method which is suitable to one-layer crust to map variation of Moho (see chapter 3) and improved it to be suitable for three-layer crust (see chapter 2). Besides, I illuminated the crustal profile across the Chaochou fault (see chapter 4), a major tectonic thrust fault. In chapter 5 and 6, I revealed some slip phenomena of Chaochou fault through detecting low-frequency earthquake triggered by 2005 Nias and 2004 Sumatra earthquakes in southern Taiwan.
Chapter 1-- Introduction 1
Chapter 2-- Receiver Functions for Three-Layer Media 3
2.1. Introduction 3
2.2. Method 4
2.3. Data Processing and Results 8
2.3.1 Identifying phases on RRF profiles 9
2.3.2 Finding depth and k value of a layered crust 10
2.4. Discussion and Conclusion 11
2.5. References 14
2.6. Tables 16
2.7. Figures 19
Chapter 3-- Variation of Moho Depth in Taiwan from Teleseismic Receiver Functions and Its Tectonic Implications 25
3.1. Introduction 26
3.2. Method and Data Analysis 28
3.3. Results 30
3.3.1 Moho depth in west of Taiwan 30
3.3.2 Moho depth change near the Longitude Valley Collision Boundary 31
3.3.3 Variation of Moho depth in Taiwan area 32
3.4. Discussion and Tectonic Interpretations 33
3.4.1 Shallow Moho depth in the western coastal plain 33
3.4.2 Profile A-A’ 34
3.4.3 Profile B-B’ and C-C’ 35
3.4.4 Profile D-D’ 36
3.5. Conclusions 37
3.6. References 40
3.7. Tables 45
3.9. Figures 49
Chapter 4-- Significant Crustal Structural Variation across the Chaochou Fault, Southern Taiwan: New Tectonic Implications for Convergent Plate Boundary 68
4.1. Introduction 68
4.2. Method and Data Analysis 70
4.3. Results and Discussion 72
4.3.1 Moho depth variation 72
4.3.2 Crustal structure across the CF 72
4.4. Conclusion 74
4.5. References 76
4.6.Figures 79
Chapter 5-- Detecting Low-Frequency Earthquakes within Non-Volcanic Tremor in Southern Taiwan Triggered by the 2005 Mw8.6 Nias Earthquake 84
5.1. Introduction 84
5.2. Data and Method 85
5.3. Result 88
5.4. Interpretation 89
5.5. Discussion and Conclusion 90
5.6. References 93
5.7. Figures 96
5.8. Auxiliary material 100
Chpater 6 -- Repeated Triggered Low-Frequency Earthquakes in Southern Taiwan 110
6.1 Introduction 110
6.2 Data and Method 111
6.3 Result and Discussion 113
6.4 Conclusion 115
6.5 References 117
6.6 Figures 120
6.7 Auxiliary material 125
Chpater 7-- Conclusions 127
Reference 129


Assumpcao, M., D. James and A. Snoke (2002), Crustal thicknesses in SE Brazilian Shield by receiver function analysis: Implications for isostatic compensation, Journal of Geophysical Research, 107, 10.1029/2001JB000422.
Brown, J. R., G. C. Beroza, and D. R. Shelly (2008), An autocorrelation method to detect low frequency earthquakes within tremor, Geophysical Research Letters., 35, L16305, doi:10.1029/2008GL034560.
Brown, J. R., G. C. Beroza, S. Ide, K. Ohta, D. R. Shelly, S. Y. Schwartz, W. Rabbel, M. Thorwart, and H. Kao (2009), Deep low-frequency earthquakes in tremor localize to the plate interface in multiple subduction zones, Geophysical Research Letters., 36, L19306, doi:10.1029/2009GL040027.
Cassidy, J. F. (1992), Numerical experiments in broadband receiver function analysis, Bulletin Seismological Society of America, 82, 1453-1474.
Frederksen, A., W., H. Folsom and G. Zandt (2003), Neighbourhood inversion of Teleseismic Ps conversions for anisotropy and layer dip, Geophysical Journal International, 155, 200-212.
Gomberg, J., J. L. Rubinstein, Z. Peng, K. C. Creager, J. E. Vidale, and P. Bodin (2008), Widespread triggering of non-volcanic tremor in California, Science, 319, 713.
Langston, C. A. (1977), Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves, Bulletin Seismological Society of America, 67, 713-724.
Levin, V., and J. Park (1997a), Crustal anisotropy beneath the Ural mtns foredeep from teleseismic receiver functions, Geophysical Research Letters, 24, 1283-1286.
Levin, V., and J. Park (1997b), P-SH conversions in a flat-layered mediumwith anisotropy of arbitrary orientation, Geophysical Journal International, 131, 253-266.
Obara, K. (2002), Nonvolcanic deep tremor associated with subduction in southwest Japan, Science, 296, 1679-1681.
Owens, T. J., G. Zandt, and S.R. Taylor (1984), Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee, Journal of Geophysical Research, 89, 7783-7795.
Peng, Z., and K. Chao (2008), Non-volcanic tremor beneath the Central Range in Taiwan triggered by the 2001 Mw 7.8 Kunlun earthquake, Geophysical Journal Internationall., 175(2), 825-829.
Peng, Z., and P. Zhao (2009), Migration of early aftershocks following the 2004 Parkfield earthquake, Nature Geoscience, 2, 877-881.
Peng, Z., J. E. Vidale, A. Wech, and R. M. Nadeau (2009), Remote triggering of tremor along the San Andreas Fault in central California, Journal of Geophysical Research, 114, B00A06, doi:10.1029/2008JB006049.
Rubinstein, J. L., J. E. Vidale, J. Gomberg, P. Bodin, K. C. Creager, and S. D. Malone (2007), Non-volcanic tremor driven by large transient shear stresses, Nature, 448, 579–582.
Shelly, D. R., G. C. Beroza, and S. Ide (2007), Non-volcanic tremor and low frequency earthquake swarms, Nature, 446, 305-307, doi:10.1038/nature05666.
Shelly, D. R. (2009), Possible deep fault slip preceding the 2004 Parkfield earthquake, inferred from detailed observations of tectonic tremor, Geophysical Research Letters., 36, L17318, doi:10.1029/ 2009GL039589.
Shelly, D. R. (2010a), Migrating tremors illuminate complex deformation beneath the seismogenic San Andreas fault, Nature, 463, 648-652, doi:10.1038/nature08755.
Shelly, D. R. (2010b), Periodic, Chaotic, and Doubled Earthquake Recurrence Intervals on the Deep San Andreas Fault, Science, 328, 1385-1388, doi:10.1126/science.1189741.
Shelly, D. R., and J. L. Hardebeck (2010), Precise tremor source locations and amplitude variations along the lower‐crustal central SanAndreas Fault, Geophysical Research Letters, 37, L14301, doi:10.1029/2010GL043672.
Wang, H.-L., H.-W. Chen and L. Zhu (2010), Constraints on average Taiwan reference Moho discontinuity model — receiver function analysis using BATS data, Geophysical Journal International, 183, 1-19, doi: 10.1111/j.1365-246X.2010.04692.x.
Zhu, L., and H. Kanamori (2000), Moho depth variation in southern California from teleseismic Receiver Functions, Journal of Geophysical Research, 105, 2969-2980.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top