跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.131) 您好!臺灣時間:2026/01/16 02:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許銘泰
研究生(外文):Ming-Tai Syu
論文名稱:磁輔助雷射蒸鍍製備氧化鋅鎵薄膜之特性研究
論文名稱(外文):Characteristics of ZnO:Ga Thin Films by Pulsed Laser Deposition in Magnetic Field
指導教授:余昌峰余昌峰引用關係
指導教授(外文):Chang-Feng Yu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:光電暨固態電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:100
中文關鍵詞:脈衝雷射蒸鍍氧化鋅鎵磁場
外文關鍵詞:PLDGZOMagnetic Field
相關次數:
  • 被引用被引用:1
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本實驗,我們使用一種稱為Aurora的脈衝雷射蒸鍍(Pulsed Laser Deposition,PLD)法去製備GZO薄膜,我們將磁場放置在靶材側去製備GZO薄膜。脈衝雷射蒸鍍法打出的plume中的粒子受到外加磁場的影響,這個方法可以增進GZO薄膜的特性,這是由於被剝蝕的粒子從靶材傳輸到基板的過程中粒子和磁場發生了交互作。本實驗中我們將改變磁場大小,然後沉積在玻璃基板上。藉由X光光電子能譜儀(X-Ray Photoelectron Spectroscopy,XPS)量測薄膜成份元素。藉由X-Ray繞射(X-Ray Diffractometer,XRD),觀察薄膜結晶特性。原子力顯微鏡(AFM),觀察薄膜表面型態。霍爾量測(Hall Effect)和導電性原子力顯微術 (Conducting Atomic Force Microscopy, CAFM) ,探討薄膜的電學特性、橢圓偏光儀(Ellipsometer)和紫外光/可見光分光光譜儀(UV/VIS Spectrophotometer),觀察薄膜的光學特性。在文中詳細探討了不同的磁場影響下對薄膜成份及微結構、光學特性以及導電特性之影響以及它們之間的相關性。
實驗過程中,GZO靶材的摻雜濃度以及脈衝雷射蒸鍍的製程參數是固定的,我們可以藉由改變外加磁場大小的影響下,製備出不同摻雜濃度的GZO薄膜,當磁場增加的時候,我們GZO薄膜的載子濃度、載子遷移率及導電性幾乎都有增進,在磁場大小大約1200 Oe的時候有最低的電阻率,其值為4.624×10-4 Ω-cm。在不同的磁場強度下,所有薄膜在可見光區域的穿透率皆超過80%。在X光繞射方面,可觀察到所有不同磁場下製程的GZO薄膜,其(103)峰值較(002)來的強,如果(103)峰值較強則GZO薄膜的導電率將得到改進。

In this study, a “Aurora” Pulsed laser deposition (PLD) method is used to prepare the Gallium-doped ZnO (GZO) thin films. When the GZO thin films were deposited by a “Aurora” PLD, the different magnitude of magnetic field was applied at the target side. The interaction between the particles in the PLD plume will be enhanced by applied magnetic field. It can improve the characteristics of GZO thin films by an enhanced ionization of the ablated particles during transport from the target to substrate. GZO thin films have been deposited on glass substrates with various magnetic fields. The composition, structural, electrical and optical properties were performed by XPS, XRD, AFM, Hall-Effect, CAFM, Ellipsometer and UV-VIS spectrum measurements. The effects of the various magnetic fields on the composition, structural, electrical and optical properties of GZO thin films have been discussed.
The dopant concentration of GZO target and all of PLD processes were controlled in the same conditions. We can prepare the different dopant concentrations of GZO thin films by various applied magnetic fields. When the magnetic field is increased in PLD, it shows that the carrier concentration, conductivity and mobility of GZO thin films will be increased. The GZO thin films exhibited the lowest resistivity value of 4.624×10-4 Ω-cm with about 1200 Oe of magnetic field. Under various strengths of magnetic filed in PLD, all GZO thin films show over 80% optical transmission in the visible range. XRD indicates that the magnitude of peak (103) is stronger than the one of peak (002). If the magnitude of peak (103) is stronger, the conductivity of GZO thin films will be enhanced.

摘要 I
Abstract III
誌謝 V
目錄 VII
表目錄 XI
圖目錄 XII
第一章 緒 論 1
1-1 透明導電膜 1
1-2 透明導電膜的應用 1
1-3 透明導電膜之製備 2
1-4 研究動機與目的 3
第二章 理論基礎與文獻回顧 4
2.1 ZnO:Ga 薄膜之晶體結構 4
2.2 ZnO:Ga 薄膜之電學性質 6
2.3 ZnO:Ga 薄膜之光學性質 11
2.3.1 影響透明性的因素 12
2.4 雷射蒸鍍原理與文獻回顧 13
2.4.1 雷射蒸鍍文獻回顧 13
2.4.2 蒸鍍原理 14
2.4.3 脈衝雷射蒸鍍原理 15
2.4.4 薄膜沉積機制 17
2.4.5 薄膜的微結構 19
第三章 實驗方法與理論分析 21
3.1實驗與分析流程 21
3.2實驗方法與脈衝雷射蒸鍍系統 22
3.2.1製作靶材 22
3.2.1.1 實驗原理 22
3.2.1.2實驗儀器 23
3.2.1.3實驗步驟 24
3.2.2基板清洗 25
3.2.3脈衝雷射蒸鍍步驟 26
3.3量測設備與基礎理論 28
3.3.1化學分析電子術(Electron Spectroscopy for Chemical Analysis, ESCA) 29
3.3.2 X光繞射分析儀 (X-Ray Diffractometer) 32
3.3.3原子力顯微鏡(Atomic Force Microscope) 33
3.3.5導電性原子力顯微術 (Conducting Atomic Force Microscopy, CAFM) 36
3.3.6霍爾效應量測 (Hall Effect Measurement) 37
3.3.7 UV-VIS光譜儀 (UV-VIS spectrophotometer) 41
3.3.8 橢圓偏光儀 (Ellipsometer, Alpha-SE) 42
第四章 結果與討論 44
4.1 基板溫度之影響 44
4.1.1蒸鍍參數之設定 44
4.1.2 成份分析 44
4.1.2.1化學分析電子術(Electron Spectroscopy for Chemical Analysis, ESCA)量測 44
4.1.3 微結構分析 52
4.1.3.1 晶體結構分析 52
4.1.3.2 表面型態分析 56
4.1.4 電性分析 58
4.1.4.1 霍爾效應分析 58
4.1.4.2化學分析電子術Multiplex O1s之分析 63
4.1.4.3 低溫霍爾效應分析 67
4.1.4.4導電性原子力顯微術 (Conducting Atomic Force Microscopy, CAFM) 71
4.1.5 光學特性分析 74
4.1.5.1 穿透光譜分析 74
第五章 結論與未來展望 79
參考文獻: 81

第一章:
[1] 馬振基,奈米科技原理與應用,全華科技圖書公司,(2003)
[2] C. Eberspacher, A.L. Fahrenbruch and R.H. Bube, Thin Solid Films, 136 (1986), 1
[3] J.Hu and R.G.Gordon, J. Appl. Phys. 71(2) (1992), 880
[4] H.U.Habermeier, Thin Solid Films, 80 (1981), 157
[5] Z.C.Jin, I.Hamberg and C.G.Grangvist, J. Appl. Phys. 64 (1988),5117
[6] T. Nakamura, K. Masuko, A. Ashida, T. Yoshimura, N. Fujimura, Thin Solid Films, 518 (2010), 2971
[7] W. S. Law, Journal of Electron Materials, 16 (1987), 141
[8] 王敬龍,“以溶膠-凝膠法製備ITO薄膜之製程研究”,國立成功 大學材料科學及工程研究所碩士論文,(1996)
[9] F.Furusaki, J. Takahashi and K.Kodaira, J. of the Ceramic Society of Japan, 102(2) (1994), 200
[10] L. Davis, Thin Solid Films, 236 (1993), 1
[11] T.Minami, H.Satoo,T.Sonoda,H.Nanto and S. Takata, Thin Solid Films, 171 (1989), 307
第二章:
[1] 鄭景翔,“GZO/Pt/GZO透明導電多層膜之性質研究及光學模擬”,國立成功大學材料科學及工程學系碩士論文,(2006)
[2] H. Iechi, T. Okawara, M. Sakai, M. Nakanura, K. Kudo, Electrical Engineering in Japan(Translated from Denki Gakkai Ronbunshi), Vol. 124-C, No. 6, (2004), 1207
[3] 王君璧,“氧化鋅薄膜之光學及材料特性研究”,國立台灣大學光電工程學研究所碩士論文,(2005)
[4] 姜辛,孫超,洪瑞江,戴達煌,透明導電氧化物薄膜,高等教育出版社
[5] C. Erginsoy, Phys. Rev. 79(1950) 1013
[6] Brooks H. Advances in Electronics and Electron Physics Vol 78. ed. L Martin (NewYork:Academic), (1955), p85
[7] Johnson V A and Lark-Horovitz K, Phys. Rev. 71 (1947), 374
[8] Petrizz P L, Phys. Rev. 104 (1956), 1508
[9] H. L. Hartnagel, A. K. Jagadish, “Semicounducting Transparent Thin Films”, published by Institute of Physics Publication, Chap.3, (1995)
[10] P. Nunes, E. Fortunato, R. Matins, The International Journal of Inorganic Materials, 3 (2001), 1125
[11] T. Minami, S. Suzuki, T. Miyata, MRS Symp. Proc. 666 (2001)
[12] T. Minami, MRS Bulletin, Aug. (2000)
[13] C. Agashe, O. Kluth, J. Hupkes, U. Zastrow, B. Rech, M. Wutting, J. Appl. Phys. 95 (2004), 1911
[14] 李玉華,“透明導電膜及其應用”,科儀新知,第十二卷第一期,
(1990),p94-p102
[15] Shigeo Yata, Yuu Nakashima, Takeshi Kobayashi, Thin Solid Films, 445 (2003), 259
[16] H. Agura, H. Okinaka, S. Hoki, T. Aoki, A. Suzuki, T. Matsushita, M. Okuda, Electrical Engineering in Japan(Translated from Denki Gakkai Ronbunshi), Vol. 123-C, No. 11, (2003), pp. 1916
[17] K. Ebihara, S. M. Park, K. Fujii, T. Ikegami, Diamond & Related Materials, 15 (2006), 989
[18] T. H. Kim, S. H. Nam, H. S. Park, J. K. Song, S. M. Park, Applied Surface Science, 253 (2007), 8054
[19] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, Appl. Surf. Sci. 193 (2002), 287
[20] 莊達人,VLSI製造技術,高立圖書有限公司(1998)
[21] X. D. Wu, T. Venkatesan, A. Inam, X.X.Xi, ”Pulsed laser deposition of high Tc superconducting thin films” present and future”, Mat. Res. Soc. Symp. Proc. 191 (1990), 129.
[22] L. Lynds and B. R. Weinberger, ”Pulsed laser ablation as a source of energetic reactants: Synthesis of superconducting high to thin films”, Mat. Res. Soc. Symp. Proc.191 (1990) 3.
[23] U. J. Gibson, J. A. Ruffner, J. J. Mcnally and G. Peterson, Mat. Res. Soc. Symp. Proc, 191, (1990), 19
[24] K. Niemax and W. Sdorra, “Optical emission spectrometry andlaser-induced fluorescence of laser produced sample plumes”, Applied Optics, 1990, 29, 5000.
[25] 陳銘堯,物理雙月刊,15卷,5期,P.669 (1993)
[25] J. Venables, Rep. Prog. Phys. 47 (1984), 399
[26] J. A. Thornton, J. Vac. Sci. Technol. 11(4) (1974), 666
第三章:
[1] X. T. Hao, F. R. Zhu, K. S. Ong, L. W. Tan, Semicond. Sci. Technol.21, 1, 48 (2006)
[2] 羅吉宗, 薄膜科技與應用, 全華科技圖書股份有限公司, 台北市,
2-5~11, (2005)
[3] 陳泊名,“以橢圓儀檢測氧化鋅薄膜特性之探討”,南台科技大學機械工程系碩士論文,(2006)
第四章:
[1] 甘炯耀,“ZnO之薄膜製備與發光性質研究”,國立清華大學材料科學工程學系碩士論文,(2001)
[2] Huheey et al., Inorganic Chemistry, 4th Ed., 1993, Addison-Wesley, P.182~198.
[3] A. Suzuki, T. Matsushita, T. Aoki, Y. Yoneyama, and M. Okuda, Jpn.J. Appl. Phys., Part 2 38, L71 (1999)
[4] A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, and M. Okuda, Jpn.J. Appl. Phys., Part 2 35, L56 (1996)
[5] A. Suzuki, T. Matsushita, Y. Sakamoto, N. Wada, T. Fukuda, H. Fujiwara, and M. Okuda, Jpn. J. Appl. Phys., Part 1 35, 5457 (1996)
[6] B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn., Addison Wesley, Reading, MA, 102 (1978)
[7] Y. Igasaki and H. Saito, Thin Solid Films, 199 (1991), 223
[8]葉志鎮,呂建國,張銀珠,何海平等,“氧化鋅半導體材料摻雜技術與應用”,(2008)
[9] L. K. Rao, V. Vinni, Appl. Phys. Lett. 63 (1993), 608
[10] J. C. C. Fan, J. B. Goodenough, J. Appl. Phys. 48 (1977), 3524
[11] M. N. Islam, T. B. Ghosh, K. L. Chopra, H. N. Acharya, Thin Solid Films, 280 (1996), 20
[12] S. Major. S. Kumar. M. Bhatnagar, K. L. Chopra, Appl. Phys. Lett. 40 (1986), 394
[13] Richard Petritz, Physical Review, Vol.104, No.6 (1956)
[14] D. Jiles, “Introduction to the Electronic Properties of Materials”, Chapman &Hill (1994)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top