|
1. Pederson, C. J. J. Am. Chem. Soc. 1967, 89, 7017–7036. Cyclic polyethers and their complexes with metal salts. 2. de Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord. Chem. Rev. 2000, 205, 41–57. Combining luminescence, coordination and electron transfer for signalling purposes. 3. Schmidtchen, F. P.; Berger M. Chem. Rev. 1997, 97, 1609–1646. Artificial organic host molecules for anions. 4. Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3–40. Design principles of fluorescent molecular sensors for cation recognition. 5. (a.) Zhong, Z.; Anslyn, E. V. Angew. Chem. Int. Ed. 2003, 42, 3005–3008. Controlling the oxygenation level of hemoglobin by using a synthetic receptor for 2,3-bisphosphoglycerate. (b.) Kolusheva, S.; Molt, O.; Herm, M.; Schrader, T.; Jelinek, R. J. Am. Chem. Soc. 2005, 127, 10000–10001. Selective detection of catecholamines by synthetic receptors embedded in chromatic polydiacetylene vesicles. (c.) Satrijo, A.; Swager, T. M. J. Am. Chem. Soc. 2007, 129, 16020–16028. Anthryl-doped conjugated polyelectrolytes as aggregation-based sensors for nonquenching multicationic analytes. (d.) Maynor, M. S.; Nelson, T. L.; O’Sullivan, C.; Lavigne, J. J. Org. Lett. 2007, 9, 3217–3220. A food freshness sensor using the multistate response from analyte-induced aggregation of a cross-reactive poly(thiophene). 6. (a.) Still, W. C. Acc. Chem. Res. 1996, 29, 155–163. Discovery of sequence-selective peptide binding by synthetic receptors using encoded combinatorial libraries. (b.) Dowden, J.; Edwards, P. D.; Flack, S. S.; Kilburn, J. D. Chem. Eur. J. 1999, 5, 79–89. Synthesis and binding properties of a macrocyclic peptide receptor. (c.) Wennemers, H.; Conza, M.; Nold, M.; Krattiger, P. Chem. Eur. J. 2001, 7, 3342–3347. Diketopiperazine receptors: a novel class of highly selective receptors for binding small peptides. (d.) Aït-Haddou, H.; Wiskur, S. L.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2001, 123, 11296–11297. Achieving large color changes in response to the presence of amino acids: a molecular sensing ensemble with selectivity for aspartate. (e.) Han, M. S.; Kim, D. H. Tetrahedron 2004, 60, 11251–11257. Rationally designed chromogenic chemosensor that detects cysteine in aqueous solution with remarkable selectivity. (f.) Folmer-Anderson, J. F.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2005, 127. 7986–7987. Colorimetric enantiodiscrimination of α-amino acids in protic media. (g.) Honda, K.; Nakata, E.; Ojida, A.; Hamachi, I. Chem. Commun. 2006, 4024–4026. Ratiometric fluorescence detection of a tag fused protein using the dual-emission artificial molecular probe. 7. Fang, J.-M.; Selvi, S.; Liao, J.-H.; Slanina, Z.; Chen, C.-T.; Chou, P.-T. J. Am. Chem. Soc. 2004, 126, 3559–3566. Fluorescent and circular dichroic detection of monosaccharides by molecular sensors: bis[(pyrrolyl)ethynyl]naphthyridine and bis[(indolyl)ethynyl]naphthyridine. 8. Vazquez, M. E.; Blanco, J. B.; Imperiali, B. J. Am. Chem. Soc. 2005, 127, 1300–1306. Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-dimethylamino-2,3-naphthalimide. 9. Caltagirone, C.; Bencini, A.; Demartin, F.;. Devillanova, F. A.; Garau, A.; Isaia, F.; Lippolis, V.; Mariani, P.; Papke, U.; Tei, L.; Verani, G. J. Chem. Soc., Dalton Trans. 2003, 903–909. Redox chemosensors: coordination chemistry towards CuII, ZnII, CdII, HgII, and PbII of 1-aza-4,10-dithia-7-oxacyclododecane-([12]aneNS2O) and its N-ferrocenylmethyl derivative. 10. Lloris, J. M.; Martínez-Máñez, R.; Padilla-Tosta, M. E.; Pardo, T.; Soto, J.; Beer, P. D.; Cadmanb, J.; Smith, D. K. J. Chem. Soc., Dalton Trans. 1999, 2359–2369. Cyclic and open-chain aza–oxa ferrocene-functionalised derivatives as receptors for the selective electrochemical sensing of toxic heavy metal ions in aqueous environments. 11. Beer, P. D.; Cadman, J. Coord. Chem. Rev. 2000, 205, 131–155. Electrochemical and optical sensing of anions by transition metal based receptors. 12. Keefe, M.; Benkstein, K. D.; Hupp, J. T. Coord. Chem. Rev. 2000, 205, 201–228. Luminescent sensor molecules based on coordinated metals: a review of recent developments. 13. Kuo, L.-J.; Liao, J.-H.; Chen, C.-T.; Huang, C.-H.; Chen, C.-S.; Fang, J.-M. Org. Lett. 2003, 5, 1821–1824. Two-arm ferrocene amide compounds: synclinal conformations for selective sensing of dihydrogen phosphate ion. 14. de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. Chem. Rev. 1997, 97, 1515–1566. Signaling recognition events with fluorescent sensors and switches. 15. Jose, D. A.; Mishra, S.; Ghosh, A.; Shrivastav, A.; Mishra, S. K.; Das, A. Org. Lett. 2007, 9, 1979–1982. Colorimetric sensor for ATP in aqueous solution. 16. Huang, J.-H.; Wen, W.-H.; Sun, Y.-Y.; Chou, P.-T.; Fang, J.-M. J. Org. Chem. 2005, 70, 5827–5832. Two-stage sensing property via a conjugated donor–acceptor–donor constitution: application to the visual detection of mercuric ion. 17. Yang, J.-S.; Lin, Y.-H.; Yang, C.-S.; Org. Lett. 2002, 4, 777–780. Palladium-catalyzed synthesis of trans-4-(N,N-bis(2-pyridyl)amino)stilbene. A new intrinsic fluoroionophore for transition metal ions. 18. Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J. J. Am. Chem. Soc. 2007, 129. 1500–1501. A selective fluorescent sensor for imaging Cd2+ in living cells. 19. Chatterjee, A.; Santra, M.; Won, N.; Kim, S.; Kim, J. K.; Kim, S. B.; Ahn, K. H. J. Am. Chem. Soc. 2009, 131. 2040–2041. Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. 20. Shie, J.-J.; Fang, J.-M.; Wang, S.-Y.; Tsai, K.-C.; Cheng, Y.-S. E.; Yang, A.-S.; Hsiao, S.-C.; Su, C.-Y.; Wong, C.-H. J. Am. Chem. Soc. 2007, 129. 11892–11893. Synthesis of tamiflu and its phosphonate congeners possessing potent anti-influenza activity. 21. Wen, W.-H.; Lin, M.; Su, C.-Y.; Wang, S.-Y.; Cheng, Y.-S. E.; Fang, J.-M.; Wong, C.-H. J. Med. Chem. 2009, 52, 4903–4910. Synergistic effect of zanamivir–porphyrin conjugates on inhibition of neuraminidase and inactivation of influenza virus. 22. Ueno, T.; Urano, Y.; Setsukinai, K.; Takakusa, H.; Kojima, H.; Kikuchi, K.; Ohkubo, K.; Fukuzumi, A.; Nagano, T. J. Am. Chem. Soc. 2004, 126. 14079–14085. Rational principles for modulating fluorescence properties of fluorescein. 23. Gabe, Y.; Urano, Y.; Kikuchi, K.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2004, 126. 3357–3367. Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophores–rational design of potentially useful bioimaging fluorescence probe. 24. Matsumoto, T.; Urano, Y.; Shoda, T.; Kojima, H.; Nagano, T. Org. Lett. 2007, 9, 3375–3377. A thiol-reactive fluorescence probe based on donor-excited photoinduced electron transfer: key role of ortho substitution. 25. Jung, H. S.; Park, M.; Han, D. Y.; Kim, E.; Lee, C.; Ham, S.; Kim, J. S. Org. Lett. 2009, 11, 3378–3381. Cu2+ ion-induced self-assembly of pyrenylquinoline with a pyrenyl excimer formation. 26. Liao, J.-H.; Chen, C.-T.; Fang, J.-M. Org. Lett. 2002, 4, 561–564. A novel phosphate chemosensor utilizing anion-induced fluorescence change. 27. Ojida, A.; Mito-Oka, Y.; Inoue, M.-A.; Hamachi, I. J. Am. Chem. Soc. 2002, 124, 6256–6258. First artificial receptors and chemosensors toward phosphorylated peptide in aqueous solution. 28. Chen, K.-H.; Yang, J.-S.; Hwang, C.-Y.; Fang, J.-M. Org. Lett. 2008, 10, 4401–4404. Phospholipid-induced aggregation and anthracene excimer formation. 29. Suresh, M.; Mishra, S.; Mishra, S. K.; Suresh, E.; Mandal, A. K.; Shrivastav, A.; Das, A. Org. Lett. 2009, 11, 2740–2743. Resonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organism. 30. Wu, C.-Y.; Jan, J.-T.; Ma, S.-H.; Kuo, C.-J.; Juan, H.-F.; Cheng, Y.-S. E.; Hsu, H.-H.; Huang, H.-C.; Wu, D.; Brik, A.; Liang, F.-S.; Liu, R.-S.; Fang, J.-M.; Chen, S.-T.; Liang, P.-H.; Wong, C.-H. Proc. Natl. Acad. Sci. USA. 2004, 100, 10012–10017. Small molecules targeting severe acute respiratorysyndrome human coronavirus. 31. Gamsey, S.; Miller, A.; Olmstead, M. M.; Beavers, C. M.; Hirayama, L. C.; Pradhan, S.; Wessling, R. A.; Singaram, B. J. Am. Chem. Soc. 2007, 129. 1278–1286. Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and α-hydroxycarboxylates. 32. Chen, K.-H.; Liao, J.-H.; Chan, H.-Y.; Fang, J.-M. J. Org. Chem. 2009, 74, 895–898. A fluorescence sensor for detection of geranyl pyrophosphate by the chemo-ensemble method. 33. (a.) Rebek, J., Jr.; Askew, B.; Ballester, P.; Buhr, C.; Jones, S.; Nemeth, D.; Williams, K. J. Am. Chem. Soc. 1987, 109, 5033–5035. Molecular recognition: hydrogen bonding and stacking interactions stabilize a model for nucleic acid structure. (b.) Hosseini, M. W.; Blacker, A. J.; Lehn, J.-M. J. Am. Chem. Soc. 1990, 112, 3896–3904. Multiple molecular recognition and catalysis. A multifunctional anion receptor bearing an anion binding site, an intercalating group, and a catalytic site for nucleotide binding and hydrolysis. (c.) Inouye, M.; Takase, M. Angew. Chem., Int. Ed. 2001, 40, 1746–1748. Specific binding and separation of dinucleotides by ferrocene-modified artificial receptors. (d.) Dohno, C.; Saito, I. ChemBioChem. 2005, 6, 1075–1081. Discrimination of single-nucleotide alterations by G-specific fluorescence quenching. 34. (a.) Friedberg, E. C.; Walker, G. C.; Siede, W. DNA Repair and Mutagenesis; ASM Press: Washington, DC, 1995. (b.) Ionov, Y.; Peinado, M. A.; Malkhosyan, S.; Shibata, D.; Perucho, M. Nature 1993, 363, 558–561. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. (c.) Streisinger, G.; Okada, Y.; Emrich, J.; Newton, J.; Tsugita, A.; Terzaghi, E.; Inouye, M. Cold Spring Harbor Symp. Quantum Biol. 1966, 31, 77–84. Frameshift mutations and the genetic code. 35. Furuta, H.; Magda, D.; Sessler, J. L. J. Am. Chem. Soc. 1991, 113, 978–985. Molecular recognition via base pairing: amine-containing, cytosine-based ditopic receptors that complex guanosine monophosphate. 36. Kral, V.; Sessler, J. L. Tetrahedron 1995, 51, 539–554. Molecular recognition via base-pairing and phosphate chelation. ditopic and tritopic sapphyrin-based receptors for the recognition and transport of nucleotide monophosphates. 37. Wilds, C. J.; Maier, M. A.; Manoharan, M.; Egli, M. Helv. Chim. Acta. 2003, 86, 966–978. Structural basis for recognition of guanosine by a synthetic tricyclic cytosine analogue: guanidinium G-clamp. 38. Okamoto, A.; Tainaka, K.; Saito, I. J. Am. Chem. Soc. 2003, 125, 4972–4973. Clear distinction of purine bases on the complementary strand by a fluorescence change of a novel fluorescent nucleoside. 39. Feibush, B.; Saha, M.; Onan, K.; Karger, B.; Giese, R. J. Am. Chem. Soc. 1987, 109, 7531–7533. HPLC separation of DNA adducts based on hydrogen bonding. 40. Murray, T. J.; Zimmerman, S. C. J. Am. Chem. Soc. 1992, 114, 4010–4011. New triply hydrogen bonded complexes with highly variable stabilities. 41. Bell, T. W.; Zheng, H.; Zimmerman, S. C.; Thiessen, P. A. Angew. Chem. Ed. Engl. 1995, 34, 2163–2165. Highly effective hydrogen-bonding receptors for guanine derivatives. 42. Nakatani, K.; Sando, S.; Kumasawa, H.; Kikuchi, J.; Saito, I. J. Am. Chem. Soc. 2001, 123, 12650–12657. Recognition of guanine-guanine mismatches by the dimeric form of 2-amino-1,8-naphthyridine. 43. Abe, H.; Mawatari, Y.; Teraoka, H.; Fujimoto, K.; Inouye, M. J. Org. Chem. 2004, 69, 495–504. Synthesis and molecular recognition of pyrenophanes with polycationic or amphiphilic functionalities: artificial plate-shaped cavitant incorporating arenes and nucleotides in water. 44. Park, T.; Zimmerman, S. C.; Nakashima, S. J. Am. Chem. Soc. 2005, 127, 6520–6521. A highly stable quadruply hydrogen-bonded heterocomplex useful for supramolecular polymer blends. 45. Dohno, C.; Uno, S.-N.; Nakatani, K. J. Am. Chem. Soc. 2007, 129, 11898–11899. Photoswitchable molecular glue for DNA. 46. Lu, S.-H.; Selvi, S.; Fang, J.-M. J. Org. Chem. 2007, 72, 117–122. Ethynyl-linked (pyreno)pyrrole–naphthyridine and aniline–naphthyridine molecules as fluorescent sensors of guanine via multiple hydrogen bondings. 47. Kuykendall, D. W.; Anderson, C. A.; Zimmerman, S. C. Org. Lett. 2009, 11, 61–64. Hydrogen-bonded DeUG•DAN heterocomplex: structure and stability and a scalable synthesis of DeUG with reactive functionality. 48. Oka, Y.; Peng, T.; Takei, F.; Nakatani, K. Org. Lett. 2009, 11, 1377–1379. Synthesis and reaction of DNA oligomers containing modified cytosines related to bisulfite sequencing. 49. Cywinski, P. J.; Moro, A. J.; Ritschel, T.; Hildebrandt, N.; Löhmannsröben, H.-G. Anal. Bioanal. Chem. 2011, 399, 1215–1222. Sensitive and selective fluorescence detection of guanosine nucleotides by nanoparticles conjugated with a naphthyridine receptor. 50. Shih, H.-C.; Tang, N.; Burrows, C. J.; Rokita, S. E. J. Am. Chem. Soc. 1998, 120, 3284–3288. Nickel-based probes of nucleic acid structure bind to guanine N7 but do not perturb a dynamic equilibrium of extrahelical guanine residues. 51. Chen, H.; Parkinson, J. A.; Morris, R. E.; Sadler, P. J. J. Am. Chem. Soc. 2003, 125, 173–186. Highly selective binding of organometallic ruthenium ethylenediamine complexes to nucleic acids: novel recognition mechanisms. 52. Wong, A.; Wu, G. J. Am. Chem. Soc. 2003, 125, 13895–13905. Selective binding of monovalent cations to the stacking G-quartet structure formed by guanosine 5''-monophosphate: a solid-state NMR study. 53. Tsukagoshi, K.; Shinkai, S. J. Org. Chem. 1991, 56, 4089–4091. Specific complexation with mono- and disaccharides that can be detected by circular dichroism. 54. James, T. D.; Sandanayake, K. R. A. S.; Iguchi, R.; Shinkai, S. J. Am. Chem. Soc. 1995, 117, 8982–8987. Novel saccharide-photoinduced electron transfer sensors based on the interaction of boronic acid and amine. 55. Luvino, D.; Smietana, M.; Vasseur, J.-J. Tetrahedron Lett. 2006, 47, 9253–9256. Selective fluorescence-based detection of dihydrouridine with boronic acids 56. Shabbir, S. H.; Joyce, L. A.; da Cruz, G. M.; Lynch, V. M.; Sorey, S.; Anslyn, E. V. J. Am. Chem. Soc. 2009, 131, 13125–13131. Pattern-based recognition for the rapid determination of identity, concentration, and enantiomeric excess of subtly different threo diols. 57. Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Cecchi, M.; Escuder, B.; Fusi, V.; Garcia-Espaa, E.; Giorgi, C.; Luis, S. V.; Maccagni, G.; Marcelino, V.; Paoletti, P.; Valtancoli, B. J. Am. Chem. Soc. 1999, 121, 6807–6815. Thermodynamics of phosphate and pyrophosphate anions binding by polyammonium receptors. 58. Nishizawa, S.; Kato, Y.; Teramae, N. J. Am. Chem. Soc. 1999, 121, 9463–9464. Fluorescence sensing of anions via intramolecular excimer formation in a pyrophosphate-induced self-assembly of a pyrene-functionalized guanidinium receptor. 59. Kruppa, M.; König, B. Chem. Rev. 2006, 106, 3520–3560. Reversible coordinative bonds in molecular recognition. 60. (a.) Hanshaw, R. G.; Hilkert, S. M.; Jiang, H.; Smith, B. D. Tetrahedron Lett. 2004, 45, 8721–8724. An indicator displacement system for fluorescent detection of phosphate oxyanions under physiological condition. (b.) McDonough, M. J.; Reynolds, A. J.; Lee, W. Y. G.; Jolliffe, K. A. Chem. Commun. 2006, 2971–2973. Selective recognition of pyrophosphate in water using a backbone modified cyclic peptide receptor. 61. Watanabe, S.; Ohtsuka, K.; Sato, S.; Takenaka, S. Bioorg. Med. Chem. 2011, 19, 1361–1365. Discrimination of phosphorylated double stranded DNA by naphthalene diimide having zinc(II) dipicolylamine complexes. 62. Hosseini, M. W.; Blacker, A. J.; Lehn, J.-M. J. Chem. Soc., Chem. Commun. 1988, 9, 596–598. Multiple molecular recognition and catalysis. nucleotide binding and ATP hydrolysis by a receptor molecule bearing an anion binding site, an intercalator group, and a catalytic site. 63. Zimmerman, S. C.; Wu, W. J. Am. Chem. Soc. 1989, 111, 8054–8055. A rigid molecular tweezer with an active site carboxylic acid: an exceptionally efficient receptor for adenine in an organic solvent. 64. Rotello, V. M.; Viani, E. A.; Deslongchamps, G.; Murray, B. A.; Rebek, J., Jr. J. Am. Chem. Soc. 1993, 115, 797–798. Molecular recognition in water: new receptors for adenine derivatives. 65. Eliseev, A. V.; Schneider, H.-J.; J. Am. Chem. Soc. 1994, 116, 6081–6088. Molecular recognition of nucleotides, nucleosides, and sugars by aminocyclodextrins. 66. Rhee, H.-W.; Lee, C.-R.; Cho, S.-H.; Song, M.-R.; Cashel, M.; Choy, H. E.; Seok, Y.-J.; Hong, J.-I. J. Am. Chem. Soc. 2008, 130, 784–785. Selective fluorescent chemosensor for the bacterial alarmone (p)ppGpp. 67. Xu, Z.; Singh, N. J.; Lim, J.; Pan, J.; Kim, H. N.; Park, S.; Kim, K. S.; Yoon, J. J. Am. Chem. Soc. 2009, 131, 15528–15533. Unique sandwich stacking of pyrene–adenine–pyrene for selective and ratiometric fluorescent sensing of ATP at physiological pH. 68. Mayer, M. F.; Nakashima, S.; Zimmerman, S. C. Org. Lett. 2005, 7, 3005–3008. Synthesis of a soluble ureido–naphthyridine oligomer that self-associates via eight contiguous hydrogen bonds. 69. Scherman, O. A.; Ligthart, G. B. W. L.; Sijbesma, R. P.; Meijer, E. W. Angew. Chem. Int. Ed. 2006, 45, 2072–2076. A selectivity-driven supramolecular polymerization of an AB monomer. 70. Ghosh, K.; Sen, T.; Fröhlich, R. Tetrahedron Lett. 2007, 48, 2935–2938. A naphthyridine-based receptor for sensing citric acid. 71. Zhou, Y.; Xiao, Y.; Qian, X. Tetrahedron Lett. 2008, 49, 3380–3384. A highly selective Cd2+ sensor of naphthyridine: fluorescent enhancement and red-shift by the synergistic action of forming binuclear complex. 72. (a.) Mendelsohn, M. E. Nat. Med. 2005, 11, 115–116. Viagra: now mending hearts. (b.) Takimoto, E.; Champion, H. C.; Li, M.; Belardi, D.; Ren, S.; Rodriguez, E. R.; Bedja, D.; Gabrielson, K. L.; Wang, Y.; Kass, D. A. Nat. Med. 2005, 11, 214–222. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. 73. Newkome, G. R.; Garbis, S. J.; Majestic, V. K.; Fronczek, F. R.; Chiari, G. J. Org. Chem. 1981, 46, 833–839. Chemistry of heterocyclic compounds. 61. Synthesis and conformational studies of macrocycles possessing 1,8- or 1,5-naphthyridino subunits connected by carbon-oxygen bridges. 74. Corbin, P. S.; Zimmerman, S. C.; Thiessen, P. A.; Hawryluk, N. A.; Murray, T. J. J. Am. Chem. Soc. 2001, 123, 10475–10488. Complexation-induced unfolding of heterocyclic ureas. simple foldamers equilibrate with multiply hydrogen-bonded sheetlike structures. 75. Huff, J. R.; King, S. W.; Saari, W. S. J. Org. Lett. 1982, 47, 582–585. Convenient and rsgioselective synthesis of substituted 2,3,4,5-tetrahydro-1H-[l,4]diazepino- [1,7-a]benzimidazoles. 76. (a.) Camaioni, E.; Costanzi, S.; Vittori, S.;Volpini, R.; Klotz, K. N.; Cristalli, G. Bioorg. Med. Chem. 1998, 6, 523–533. New substituted 9-alkylpurines as adenosine receptor ligands. (b.) Harnden, M. R.; Jarvest, R. L.; Bacon, T. H.; Boyd, M. R. J. Med. Chem. 1987, 30, 1636–1642. Synthesis and Antivity of 9-[4-Hydroxy-3-(hydroxymethyl)but-1-yl]purines. 77. Brik, A.; Wu, C.-Y.; Best, M. D.; Wong, C.-H. Bioorg. Med. Chem. 2005, 13, 4622–4626. Tetrabutylammonium fluoride-assisted rapid N9-alkylation on purine ring: application to combinatorial reactions in microtiter plates for the discovery of potent sulfotransferase inhibitors in situ. 78. (a.) Bell, T. W.; Hou, Z.; Luo, Y.; Drew, M. G. B.; Chapoteau, E.; Czech, B. P.; Kumar, A. Science 1995. 269. 671–674. Detection of creatinine by a designed receptor. (b.) Beckles, D. L.; Maioriello, J.; Santora, V. J.; Bell, T. W.; Chapoteau, E.; Czech, B. P.; Kumar, A. Tetrahedron 1995, 51, 363–376. Complexation of creatinine by synthetic receptors. 79. Imae, T.; Kamiya, R.; Ikeda, S. Journal of Colloid and Interface Science 1985, 108, 215–225. Formation of spherical and rod-like micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions. 80. Hu, R.; Feng, J.; Hu, D.; Wang, S.; Li, S.; Li, Y.; Yang, G. Angew. Chem. Int. Ed. 2010, 122, 5035–5038. A rapid aqueous fluoride ion sensor with dual output modes. 81.行政院衛生署資料,http://zzb.bz/9prwU. 82.Jemal, A.; Murray, T.; Ward, E.; Samuels, A.; Tiwari, R. C.; Ghafoor, A.; Feuer, E. J.; Thun, M. J. CA Cancer J Clin. 2005, 55, 10–30. Cancer statistics, 2005. 83.Coates, A,; Abraham, S.; Kaye, S. B.; Sowerbutts, T.; Frewin, C.; Fox, R. M.; Tattersall, M. H. Eur. J. Cancer Clin. Oncol. 1983, 19, 203–208. On the receiving end–patient perception of the side-effects of cancer chemotherapy. 84.Ross, J. F.; Chaudhuri, P. K.; Ratnam, M. Cancer 1994, 73. 2432–2443. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. 85.Yarden, Y. Eur. J. Cancer 2001, 37, 3–8. The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. 86.Blackburn, E. H. Annu. Rev. Biochem. 1984, 53, 163–194. The molecular structure of centromeres and telomeres. 87.Greider, C. W.; Blackburn, E. H. Cell 1985, 43, 405–413. Identification of a specific telomere terminal transferase activity in tetrahymena extracts. 88.McEachern, M. J.; Krauskopf, A.; Blackburn, E. H. Annu. Rev. Genet. 2000, 34, 331–358. Telomeres and their control. 89.Zakian, V. A. Annu. Rev. Genet. 1989, 23, 579–604. Structure and function of telomeres. 90.Blackburn, E. H. Science 1990, 249, 489–490. Telomeres and their synthesis. 91.de Lange, T. Genes. Dev. 2005, 19, 2100–2110. Shelterin: the protein complex that shapes and safeguards human telomeres. 92.Shay, J. W.; Wright, W. E. Nat. Rev. Drug Discov. 2006, 5, 577–584. Telomerase therapeutics for cancer: challenges and new directions. 93.(a.) Okazaki, R.; Okazaki, T.; Sakabe, K.; Sugimoto, K. Jpn J. Med. Sci. Biol. 1967, 20, 255–260. Mechanism of DNA replication possible discontinuity of DNA chain growth. (b.) Ogawa, T.; Okazaki, T. Annu. Rev. Biochem. 1980, 49, 421–457. Discontinuous DNA replication. (c.) Okazaki, R.; Okazaki, T.; Sakabe, K.; Sugimoto, K.; Sugino, A. Proc. Natl. Acad. Sci. USA. 1968, 59, 598–605. Mechanism of DNA chain growth, I. Possible discontinuity and unusual secondary structure of newly synthesized chains. (d.) Okazaki, R.; Okazaki, T.; Sugimoto, K. Proc. Natl. Acad. Sci. USA. 1968, 60, 1356–1362. Mechanism of DNA chain growth, II. Accumulation of newly synthesized short chains in E.coli infected with ligase-defective T4 phages. 94. Hayflick, L.; Moorhead, P. S. Esp. Cell Res. 1961, 25, 585–621. The serial cultivation of human diploid cell strains. 95. Hayflick, L. Esp. Cell Res. 1965, 37, 614–636. The limited in vitro lifetime of human diploid cell strains. 96. Goldstein, S. Science 1990, 249, 1129–1133. Replicative senescence: the human fibroblast comes of age. 97. Gasser, S. M. Science 2000, 288, 1377–1379. A sense of the end. 98. Blackburn, E. H. Nature 2000, 408, 53–56. Telomere states and cell fates. 99. Lingner, J.; Hughes, T. R.; Shevchenko, A.; Mann, M.; Lundblad, V.; Cech, T. R. Science 1997, 276, 561–567. Reverse transcriptase motifs in the catalytic subunit of telomerase. 100. Nakamura, T. M.; Morin, G. B.; Chapman, K. B.; Weinrich, S. L.; Andrews, W. H.; Lingner, J.; Harley, C. B.; Cech, T. R. Science 1997, 277, 955–959. Telomerase catalytic subunit homologs from fission yeast and human. 101. Feng, J. L.; Funk, W. D.; Wang, S.-S.; Weinrich, S. L.; Avilion, A. A.; Chiu, C.-P.; Adams, R. R.; Chang, E.; Allsopp, R. C.; Yu, J. H.; Le, S. Y.; West, M. D.; Harley, C. B.; Andrews, W. H.; Greider, C. W.; Villeponteau, B. Science 1995, 296, 1236–1241. The RNA component of human telomerase. 102. Kim, N. W.; Piatyszek, M. A.; Prowse, K. R.; Harley, C. B.; West, M. D.; Ho, P. L. C.; Coviello, G. M.; Wright, W. E.; Weinrich, S. L.; Shay, J. W. Science 1990, 249, 489–490. Specific association of human telomerase activity with immortal cells and cancer. 103. Shay, J. W.; Bacchetti, S. Eur. J. Cancer 1983, 33, 787–791. A survey of telomerase activity in human cancer. 104. Bang, I. Biochemisce Zeitschrift 1910, 26, 293–311. Untersuchungen über die Guanylsäre. 105. Gellert, M.; Lipsett, M. N.; Davies, D. R. Proc. Natl. Acad. Sci. USA 1962, 48, 2013–2018. Helix formation by guanylic acid. 106. Tougard, P.; Chantot, J. F.; Guschlbauer, W. Biochem. Biophys. Acta. 1973, 308, 9–16. Nucleoside conformations. X. An X-ray fiber diffraction study of the gels of guanine nucleosides. 107. Arnott, S.; Chandrasekaran, R.; Marttila, C. M. Biochem. J. 1974, 141, 537–543. Structures for polyinosinic acid and polyguanylic acid. 108. Zimmerman, S. B.; Cohen, G. H.; Davies, D. R. J. Mol. Biol. 1975, 92, 181–192. X-ray fiber diffraction and model-building study of polyguanylic acid and polyinosinic acid. 109. Zimmerman, S. B. Biolpolymers 1975, 14, 889–890. An “acid” structure for polyriboguanylic acid observed by X-ray diffraction. 110. Williamson, J. R.; Raghuraman, M. K.; Cech, T. R. Cell 1989, 59, 871–880. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. 111. Wlodarczyk, A.; Grzybowski, P.; Patkowski, A.; Dobek, A. J. Phys. Chem. B, 2005, 109, 3594–3605. Effect of ions on the polymorphism, effective charge, and stability of human telomeric DNA. Photon correlation spectroscopy and circular dichroism studies. 112. Chang, C.-C.; Kuo, I.-C.; Ling, I.-F.; Chen, C.-T.; Chen, H.-C.; Lou, P.-J.; Lin, J.-J.; Chang, T.-C. Anal. Chem. 2004, 76, 4490–4494. Detection of quadruplex DNA structures in human telomeres by a fluorescent carbazole derivative. 113. Granotier1, C.; Pennarun1, G.; Riou1, L.; Hoffschir1, F.; Gauthier1, L. R.; Cian, A. D.; Gomez, D.; Mandine, E.; Riou, J. F.; Mergny, J. L.; Mailliet, P.; Dutrillaux, B.; Boussin, F. D. Nucleic Acids Res. 2005, 33, 4182–4190. Preferential binding of a G-quadruplex ligand to human chromosome ends. 114. Huppert, J. L. Chem. Soc. Rev. 2008, 37, 1375–1384, Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. 115. Luu, K. N.; Phan, A. T.; Kuryavyi, V.; Lacroix, L.; Patel, D. J. J. Am. Chem. Soc. 2006, 128, 9963–9970. Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. 116. Wang, Y.; Patel, D. J. Structure 1993, 1, 263–282. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. 117. Parkinson, G. N.; Lee, M. P. H.; Neidle, S. Nature 2000, 408, 53–56. Crystal structure of parallel quadruplexes from human telomeric DNA. 118. Zahler, A. M.; Williamson, J. R.; Cech, T. R.; Prescott, D. M. Nature 1991, 350, 718–720. Inhibition of telomerase by G-quartet DMA structures. 119. Karlseder, J.; Smogorzewska, A.; de Lange, T. Science 2002, 295, 2446–2449. Senescence induced by altered telomere state, not telomere loss. 120. Wong, H. M.; Payet, L.; Huppert, J. L. Curr. Opin. Mol. Ther. 2009, 11, 146–155. Function and targeting of G-quadruplexes. 121. Lane, A. N.; Chaires, J. B.; Gray, R. D.; Trent, J. O. Nucleic Acids Res. 2008, 36, 5482–5515. Stability and kinetics of G-quadruplex structures. 122. Paramasivan, S.; Rujan, I.; Bolton, P. H. Methods 2007, 43, 324–331. Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. 123. Wen, J.-D.; Gray, D. M. Biochemistry 2002, 41, 11438–11448. The Ff fene 5 single-stranded DNA-binding protein binds to the transiently folded form of an intramolecular G-quadruplex. 124. Gray, D. M.; Wen, J.-D.; Gray, C. W.; Repges, R.; Repges, C.; Raabe, G.; Fleischhauer, J. Chirality 2008, 20, 431–440. Measured and calculated CD spectra of G-quartets stacked with the same or opposite polarities. 125. Đapić, V.; Abdomerović, V.; Marrington, R.; Peberdy, J.; Rodger, A.; Trent, J. O.; Bates, P. J. Nucleic Acids Res. 2003, 31, 2097–2107. Biophysical and biological properties of quadruplex oligodeoxyribonucleotides. 126. Monchaud, D.; Teulade-Fichou, M.-P. Org. biomol. chem. 2008, 6, 627–636. A hitchhiker’s guide to G-quadruplex ligands. 127. Sun, D.; Thompson, B.; Cathers, B. E.; Salazar, M.; Kerwin, S. M.; Trent, J. O.; Jenkins, T. C.; Neidle, S.; Hurley, L. H. J. Med. Chem. 1997, 40, 2113–2116. Inhibition of human telomerase by a G-quadruplex-interactive compound. 128. Perry, P. J.; Read, M. A.; Davies, R. T.; Gowan, S. M.; Reszka, A. P.; Wood, A. A.; Kelland, L. R.; Neidle, S. J. Med. Chem. 1999, 42, 2679–2684. 2,7-Disubstituted amidofluorenone derivatives as inhibitors of human telomerase. 129. Read, M. A.; Wood, A. A.; Harrison, J. R.; Gowan, S. M.; Kelland, L. R.; Dosanjh, H. S.; Neidle, S. J. Med. Chem. 1999, 42, 4538–4546. Molecular modeling studies on G-quadruplex complexes of telomerase inhibitors: structure-activity relationships. 130. Harrison, R. J.; Gowan, S. M.; Kelland, L. R.; Neidle, S. Bioorg. Med. Chem. Lett. 1999, 9, 2463–2468. Human telomerse inhibition by substituted acridine derivatives. 131. Read, M.; Harrison, R. J.; Romagnoli, B.; Tanious, F. A.; Gowan, S. H.; Reszka, A. P.; Wilson, W. D.; Kelland, L. R.; Neidle, S. Proc. Natl. Acad. Sci. USA 2001, 98, 4844–4849. Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. 132. Harrison, R. J.; Cuesta, J.; Chessari, G.; Read, M. A.; Basra, S. K.; Reszka, A. P.; Morrell, J.; Gowan, S. M.; Incles, C. M.; Tanious, F. A.; Wilson, W. D.; Kelland, L. R.; Neidle, S.; J. Med. Chem. 2003, 46, 4463–4476. Trisubstituted acridine derivatives as potent and selective telomerase inhibitors. 133. Haider, S. M.; Parkinson, G. N.; Neidle, S. J. Mol. Biol. 2003, 326, 117–125. Structure of a G-quadruplex–ligand complex. 134. Schultes, C. M.; Guyen, B.; Cuesta, J.; Neidle, S. bioorg. med. chem. Lett. 2004, 14, 4347–4351. Synthesis, biophysical and biological evaluation of 3,6-bis-amidoacridines with extended 9-anilino substituents as potent G-quadruplex-binding telomerase inhibitors. 135. Gowan, S. M.; Heald, R.; Stevens, M. F. G.; Kelland, L. R. Mol. Pharmacol. 2001, 60, 981–988. Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes. 136. Heald, R. A.; Modi, C.; Cookson, J. C.; Hutchinson, I.; Laughton, C. A.; Gowan, S. M.; Kelland, L. R.; Stevens, M. F. G. J. Med. Chem. 2002, 45, 590–597. Antitumor polycyclic acridines. 8. Synthesis and telomerase-inhibitory activity of methylated pentacyclic acridinium salts. 137. Sparapani, S.; Haider, S. M.; Doria, F.; Gunaratnam, M.; Neidle, S. J. Am. Chem. Soc. 2010, 132, 12263–12272. Rational design of acridine-based ligands with selectivity for human telomeric quadruplexes. 138. Collie, G. W.; Sparapani, S.; Parkinson, G. N.; Neidle, S. J. Am. Chem. Soc. 2011, 133, 2721–2728. Structural basis of telomeric RNA quadruplex–acridine ligand recognition. 139. Perry, P. J.; Gowan, S. M.; Read, M. A.; Kelland, L. R.; Neidle, S. Anti-Cancer Drug Des. 1999, 14, 373–382. Design, synthesis and evaluation of human telomerase inhibitors based upon a tetracyclic structural motif. 140. Caprio, V.; Guyen, B.; Opoku-Boahen, Y.; Mann, J.; Gowan, S. M.; Kelland, L. M.; Read, M. A.; Neidle, S. Bioorg. Med. Chem. Lett. 2000, 10, 2063–2066. A novel inhibitor of human telomerase derived from 10H-indolo[3,2-b]quinoline. 141. Guyen, B.; Schultes, C. M.; Hazel, P.; Mann, J.; Neidle, S. Org. Biomol. Chem. 2004, 2, 981–988. Synthesis and evaluation of analogues of 10H-indolo[3,2-b]quinoline as G-quadruplex stabilising ligands and potential inhibitors of the enzyme telomerase. 142. Zhou, J.-M.; Zhu, X.-F.; Lu, Y.-J.; Deng, R.; Huang, Z.-S.; Mei, Y.-P.; Wang, Y.; Huang, W.-L.; Liu, Z.-C.; Gu, L.-Q.; Zeng, Y.-X. Oncogene 2006, 25, 503–511. Senescence and telomere shortening induced by novel potent G-quadruplex interactive agents, quindoline derivatives, in human cancer cell lines. 143. Zhou, J.-L.; Lu, Y.-J.; Ou, T.-M.; Zhou, J.-M.; Huang, Z.-S.; Zhu, X.-F.; Du, C.-J.; Bu, X.-Z.; Ma, L.; Gu, L.-Q.; Li, Y.-M.; Chan, A. S.-C. J. Med. Chem. 2005, 48, 7315–7321. Synthesis and evaluation of quindoline derivatives as G-quadruplex inducing and stabilizing ligands and potential inhibitors of telomerase. 144. Ou, T.-M.; Lu, Y.-J.; Zhang, C.; Huang, Z.-S.; Wang, X.-D.; Tan, J.-H.; Chen, Y.; Ma, D.-L.; Wong, K.-Y.; Tang, J. C.-O.; Chan, A. S.-C.; Gu, L.-Q. J. Med. Chem. 2007, 50, 1465–1474. Stabilization of G-quadruplex DNA and down-regulation of oncogene c-myc by quindoline derivatives. 145. Mergny, J.-L.; Lacroix, L.; Teulade-Fichou, M.-P.; Hounsou, C.; Guittat, L.; Hoarau, M.; Arimondo, P. B.; Vigneron, J.-P.; Lehn, J.-M.; Riou, J.-F.; Garestier, T.; Helene, C. Proc. Natl. Acad. Sci. USA 2001, 98, 3062–3067. Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. 146. Teulade-Fichou, M.-P.; Carrasco, C.; Guittat, L.; Bailly, C.; Alberti, P.; Mergny, J.-L.; David, A.; Lehn, J.-M.; Wilson, W. D.; J. Am. Chem. Soc. 2003, 125, 4732–4740. Selective recognition of G-quadruplex telomeric DNA by a bis(quinacridine) macrocycle. 147. Arya, D. P.; Micovic, L.; Charles, I.; Coffee, R. L., Jr.; Willis, B.; Xue, L. J. Am. Chem. Soc. 2003, 125, 3733–3744. Neomycin binding to Watson–Hoogsteen (W–H) DNA triplex groove: a model. 148. Kaiser, M.; Cian, A. D.; Sainlos, M.; Renner, C.; Mergny, J.-L.; Teulade-Fichou, M.-P. Org. Biomol. Chem. 2006, 4, 1049–1057. Neomycin-capped aromatic platforms: quadruplex DNA recognition and telomerase inhibition. 149. Wheelhouse, R. T.; Sun, D.; Han, H.; Han, F. X.; Hurley, L. H. J. Am. Chem. Soc. 1998, 120, 3261–3262. Cationic porphyrins as telomerase inhibitors: the interaction of tetra-(N-methyl-4-pyridyl)porphine with quadruplex DNA. 150. Anantha, N. V.; Azam, M.; Sheardy, R. D. Biochemistry 1998, 37, 2709–2714. Porphyrin binding to quadruplexed T4G4. 151. Haq, H.; Trent, J. O.; Chowdhry, B. Z.; Jenkins, T. C. J. Am. Chem. Soc. 1999, 121, 1768–1779. Intercalative G-tetraplex stabilization of telomeric DNA by a cationic porphyrin. 152. Parkinson, G. N.; Ghosh, R.; Neidle, S. Biochemistry 2007, 46, 2390–2397. Structural basis for binding of porphyrin to human telomeres. 153. Dixon, I. M.; Lopez, F.; Tejera, A. M.; Esteve, J. P.; Blasco, M. A.; Pratviel, G.; Meunier, B. J. Am. Chem. Soc. 2007, 129, 1502–1503. A G-quadruplex ligand with 10000-fold selectivity over duplex DNA. 154. Ren, L.; Zhang, A.; Huang, J.; Wang, P.; Weng, X.; Zhang, L.; Liang, F.; Tan, Z.; Zhou, X. ChemBioChem 2007, 8, 775–780. Quaternary ammonium zinc phthalocyanine: inhibiting telomerase by stabilizing G quadruplexes and inducing G-quadruplex structure transition and formation. 155. Alzeer, J.; Luedtke, N. W. Biochemistry 2010, 49, 4339–4348. pH-Mediated fluorescence and G-quadruplex binding of amido phthalocyanines. 156. Briem, H.; Kuntz, I. D. J. Med. Chem. 1996, 39, 3401–3408. Molecular similarity based on DOCK-generated fingerprints. 157. Fedoroff, O. Y.; Salazar, M.; Han, H.; Chemeris, V. V.; Kerwin, S. M.; Hurley, L. H. Biochemistry 1998, 37, 12367–12374. NMR-based model of a telomerase-inhibiting compound bound to G-quadruplex DNA. 158. Casagrande, V.; Salvati, E.; Alvino, A.; Bianco, A.; Ciammaichella, A.; D’Angelo, C.; Ginnari-Satriani, L.; Serrilli, A. M.; Iachettini, S.; Leonetti, C.; Neidle, S.; Ortaggi, G.; Porru, M.; Rizzo, A.; Franceschin, M.; Biroccio, A. J. Med. Chem. 2011, 54, 1140–1156. N-Cyclic bay-substituted perylene G-quadruplex ligands have selective antiproliferative effects on cancer cells and induce telomere damage. 159. Xue, L.; Ranjan, N.; Arya, D. P. Biochemistry 2011, 50, 2838–2849. Synthesis and spectroscopic studies of the aminoglycoside (neomycin)–perylene conjugate binding to human telomeric DNA. 160. Shin-ya, K.; Wierzba, K.; Matsuo, K.-i.; Ohtani, T.; Yamada, Y.; Furihata, K.; Hayakawa, Y.; Seto, H. J. Am. Chem. Soc. 2001, 123, 1262–1263. Telomestatin, a novel telomerase inhibitor from Streptomyces anulatus. 161. Kim, M.-Y.; Vankayalapati, H.; Shin-ya, K.; Wierzba, K.; Hurley, L. H. J. Am. Chem. Soc. 2002, 124, 2098–2099. Telomestatin, a potent telomerase inhibitor that interacts quite specifically with the human telomeric intramolecular G-quadruplex. 162. Kim, M.-Y.; Gleason-Guzman, M.; Izbicka, E.; Nishioka, D.; Hurley, L. H. Cancer Res. 2003, 63, 3247–3256. The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. 163. Chattopadhyay, S. K.; Biswas, S. Tetrahedron Lett. 2006, 47, 7897–7900. Convergent synthesis of a 24-membered macrocyclic hexaoxazole derivative related to the novel telomerase inhibitor telomestatin. 164. Doi, T.; Yoshida, M.; Shin-ya, K.; Takahashi, T. Org. Lett. 2006, 8, 4165–4167. Total synthesis of (R)-telomestatin. 165. Minhas, G. S.; Pilch, D. S.; Kerrigan, J. E.; LaVoie, E. J.; Rice, J. E. Bioorg. Med. Chem. Lett. 2006, 16, 3891–3895. Synthesis and G-quadruplex stabilizing properties of a series of oxazole-containing macrocycles. 166. Tera, M.; Sohtome, Y.; Ishizuka, H.; Doi, T.; Takagi, M.; Shin-ya, K.; Nagasawa, K. Heterocycles 2006, 69, 505–514. Design and synthesis of telomestatin derivatives and their inhibitory activity of telomerase. 167. Linder, J.; Garner, T. P.; Williams, H. E. L.; Searle, M. S.; Moody, C. J. J. Am. Chem. Soc. 2011, 133, 1044–1051. Telomestatin: formal total synthesis and cation-mediated interaction of its seco-derivatives with G-quadruplexes. 168. Chang, C.-C.; Wu, J.-Y.; Chien, C.-W.; Wu, W.-S.; Liu, H.; Kang, C.-C.; Yu, L.-J.; Chang, T.-C. Anal. Chem. 2003, 75, 6177–6183. A fluorescent carbazole derivative: high sensitivity for quadruplex DNA. 169. Riou, J. F.; Guittat, L.; Mailliet, P.; Laoui, A.; Renou, E.; Petitgenet, O.; Mégnin-Chanet, F.; Hélène, C.; Mergny, J. L. Proc. Natl. Acad. Sci. USA. 2002, 99, 2672–2677. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. 170. Reed, J. E.; Arnal, A. A.; Neidle, S.; Vilar, R. J. Am. Chem. Soc. 2006, 128, 5992–5993. Stabilization of G-quadruplex DNA and inhibition of telomerase activity by square-planar nickel(II) complexes. 171. Bertrand, H.; Monchaud, D.; Cian, A. D.; Guillot, R.; Mergny, J.-L.; Teulade-Fichou, M.-P. Org. Biomol. Chem. 2007, 5, 2555–2559. The importance of metal geometry in the recognition of G-quadruplex-DNA by metal–terpyridine complexes. 172. Xu, L.; Zhang, D.; Huang, J.; Deng, M.; Zhanga, M.; Zhou, X. Chem. Commun. 2010, 46, 743–745. High fluorescence selectivity and visual detection of G-quadruplex structures by a novel dinuclear ruthenium complex. 173. Moorhouse, A. D.; Santos, A. M.; Gunaratnam, M.; Moore, M.; Neidle, S.; Moses, J. E. J. Am. Chem. Soc. 2006, 128, 15972–15973. Stabilization of G-quadruplex DNA by highly selective ligands via click chemistry. 174. Lombardo, C. M.; Martínez, I. S.; Haider, S.; Gabelica, V.; Pauw, E. D.; Mosesc, J. E.; Neidle, S. Chem. Commun. 2010, 46, 9116–9118. Structure-based design of selective high-affinity telomeric quadruplex-binding ligands. 175. Dash, J.; Shirude, P. S.; Hsu, S.-T. D.; Balasubramanian, S. J. Am. Chem. Soc. 2008, 130, 15950–15956. Diarylethynyl amides that recognize the parallel conformation of genomic promoter DNA G-quadruplexes. 176. Dash, J.; Shirude, P. S.; Balasubramanian, S. Chem. Commun. 2008, 3055–3057. G-quadruplex recognition by bis-indole carboxamides. 177. Hong, Y.; Häuβler, M.; Lam, J. W. Y.; Li, Z.; Sin, K. K.; Dong, Y.; Tong, H.; Liu, J.; Qin, A.; Renneberg, R.; Tang, B. Z. Chem. Eur. J. 2008, 14, 6428–6437. Label-free fluorescent probing of G-quadruplex formation and real-time monitoring of DNA folding by a quaternized tetraphenylethene salt with aggregation-induced emission characteristics. 178. Yaku, H.; Murashima, T.; Miyoshi, D.; Sugimoto, N. Chem. Commun. 2010, 46, 5740–5742. Anionic phthalocyanines targeting G-quadruplexes and inhibiting telomerase activity in the presence of excessive DNA duplexes. 179. Miller, J.; McLachlan, A. D.; Klug, A. EMBO J. 1985, 4, 1609–1614. Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. 180. Chen, X.; Jou, M. J.; Yoon, J. Org. Lett. 2009, 11, 2181–2184. An “off–on” type UTP/UDP selective fluorescent probe and its application to monitor glycosylation process. 181. Horner, O.; Anxolabéhère-Mallart, E.; Charlot, M.-F.; Tchertanov, L.; Guilhem, J.; Mattioli, T. A.; Boussac, A.; Girerd, J. J. Inorg. Chem. 1999, 38, 1222–1232. A new manganese dinuclear complex with phenolate ligands and a single unsupported oxo bridge. Storage of two positive charges within less than 500 mV. Relevance to photosynthesis. 182. Incarvito, C.; Lam, M.; Rhatigan, B.; Rheingold, A. L.; Qin, C. J.; Gavrilova. A. L.; Bosnich, B. J. Chem. Soc., Dalton Trans. 2001, 3478–3488. Bimetallic reactivity. Preparations, properties and structures of complexes formed by unsymmetrical binucleating ligands bearing 4- and 6-coordinate sites supported by alkoxide bridges. 183. Rink, S. M.; Solomon, M. S.; Taylor, M. J.; Rajur, S. B.; McLaughlin, L. W.; Hopkins, P. B. J. J. Am. Chem. Soc. 1993, 115, 2551–2557. Covalent structure of a nitrogen mustard-induced DNA interstrand cross-link: an N7-to-N7 Linkage of deoxyguanosine residues at the duplex sequence 5''-d(GNC). 184. Holley, J. L.; Mather, A.; Wheelhouse, R. T.; Cullis, P. M.; Hartley, J. A.; Bingham, J. P.; Cohen, G. M. Cancer Res. 1992, 52, 4190–4195. Targeting of tumor cells and DNA by a chlorambucil–spermidine conjugate.
|