|
[1] Sylvester J. and Uhlmann G., A global uniqueness theorem for an inverse boundary problem , Annals of Math. vol 125 (1987) pp. 153-169 [2] Brown R. , Global uniqueness in the impedance imaging problem for less regular conductivities , SIAM J . Math. Anal. vol.27 (1996) , pp. 1049-1056 [3] Nachman A. , Global uniqueness for a two-dimensional inverse boundary value problem , Annals of Math. vol. 142 (1995) pp. 71-96 . [4] Brown R. and Uhlmann G. , Uniqueness in the inverse conductivity problem with less regular conductivities in two dimensions , Comm. PDE. vol.22 (1997) pp. 1009-1027 [5] Uhlmann G., Inverse boundary value problems for partial differential equations .,Doc. Math., 1998 III pp. 77-86 [6] Alessandrini, G., Stable determination of conductivity by boundary measurements , Appl. Anal. (1988) , pp. 153-172 [7] A.wexler , B. Fry , and M. R. Neuman , Impedance-computed tomography algorithm and system , Appl. Opt. vol. 24, (1985), pp. 3985-3992 . [8] Kohn R. and Vogelius M., Determining conductivity by boundary mea surements , Comm.Pure. Appl. Math. vol. 37 (1984) , pp. 289-298 [9] Sun Z. and Uhlmann G., Generic uniqueness for an inverse boundary value problem, Duke Math. J vol. 62 (1991) , pp. 131-155 [10] Sun Z. and Uhlmann G., Recovery of singularities for formally determined inverse problems, Comm. Math. Physics vol 153 (1993), pp. 431-445 [11] Sylvester, J., An anisotropic inverse boundary value problem, Comm. Pure Appl. Math. vol 43 (1990), pp. 202-232 [12] Sylvester J. and Uhlmann G., An uniqueness theorem for an inverse boundary value problem in electric prospection. Comm. Pure Appl. Math. vol. 39 (1986) pp. 91-112 [13] Sylvester J. and Uhlmann G., Inverse boundary value problems at the boundary-continuous dependence, Comm. Pure Appl. Math vol. 49 (1988) pp. 197-221
|