|
\renewcommand{\refname}{} \begin{thebibliography}{40} \bibitem{}Ben, M. G., Martinez, E. J. and Yohai, V. J. (1999), Robust estimatiom in vector autogressive moving-average models. {\it J. Time Ser. Anal.} {\bf 20}, 381-399. \bibitem{}Blum, J. R., Kiefer, J. and Rosenblatt, M. (1961). Distribution free tests of indenpendence based on the sample distru function. {\it Ann. Math. Statist.} {\bf 32}, 485-498. \bibitem{}Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1994). {\it Time Series Analysis. Forecasting and Control.} 3rd edition. Prentice Hall, Englewood Cliffs, NJ. \bibitem{}Brockwell, P. J. and Davis, R. A. (1996). {\it Introduction to Time Series and Forecasing.} Springer, New York. \bibitem{}Bustos, O. H. and Yohai, V. J. (1986). Robust estimates for ARMA models. {\it J. Amer. Statist. Assoc.} {\bf 81}, 155-168. \bibitem{}Chan, N. H. and Tran, L. T. (1992). Nonparametric tests for serial dependence. {\it J. Time Ser. Anal}. {\bf 13}, 102-113. \bibitem{}Chitturi, R. V., (1970). Distribution of residual autocorrelations in multiple autoregressive schemes. {\it J. Am. Statist. Assoc.} {\bf 69}, 928-934. \bibitem{}Coles, S.G. (2001), {\it An Introduction to Statistical Modelling of Extreme Values}. Springer Series in Statistical. \bibitem{}Coles, S.G. and Tawn, J.A. (1991), Modelling extreme multivariate events. {\it Journal of the Royal Statistical Society B,} {\bf 53}, 377-392. \bibitem{}Coles, S.G. and Tawn, J.A. (1994), Statistical methods for multivariate extremes: An application to structural design (with discussion). {\it Applied Statistics,} {\bf 43}, 1-48. \bibitem{}Deheuvels, P. (1981). An asymptotic decomposition for multivariate distribution-free tests of indenpendence. {\it J. Mult. Anal.} {\bf 11}, 102-113. \bibitem{}Derby, L. and Martin, R. D. (1979). Robust estimation of the first-order autoregression. {\it Amer. Statist.} {\bf 42}, 285-287. \bibitem{}El Himdi, K. and Roy, R. (1997). Tests for noncorrelation of two multivariate ARMA time series. {\it Canad. J. Statist.} {\bf 25}, 233-256. \bibitem{}Gewekw, J. (1981). A comparison of tests of indenpendence of two covariance stationary time series. {\it J. Am. Sataist. Assoc.} {\bf 76}, 363-373. \bibitem{}Goodman, L. A. and Grunfeld, Y. (1961). Some nonparametric tests for comovements between time series. {\it J. Am. Statist. Assoc.} {\bf 56}, 11-26. \bibitem{}Granger, C. W. J. (1980). Testingfor causality: a personal viewpoint. {\it J. Economic Dynamics and Control} {\bf 2}, 329-352. \bibitem{}Haan, L. de and Ronde, J. de (1998). Sea and wind:multivariate extremes at work. {\it Extremes} {\bf 1}, 7-45. \bibitem{}Hallin, M., Jurevckova, J. Picek, J. and Zahaf, T. (1999). Nonparametric tests of independence of two autoregressive time series based on autoregression rank scores. {\it J. Statist. Plann. Inference} {\bf 75}, 319-352. \bibitem{}Haugh, L. D. (1976). Checking the independence of two covariance-stationary time series: a univariate residual cross-correlation approach. {\it J. Amer. Statist. Assoc.} {\bf 71}, 378-385. \bibitem{}Haugh, L. D. and Box, G. E. P. (1977). Identification of dynamic regression(distributed lag) models connecting two time series. {\it J. Am. Statist. Assoc.} {\bf 72}, 121-130. \bibitem{}Hoeffding, W. (1948). A non-parametric test of indenpendence. {\it Ann. Math. Statist.} {\bf 19}, 546-557. \bibitem{}Hong, Y. (1996). Testing for indenpendence between two stationary time series. {\it Biometrika} {\bf 83}, 615-625. \bibitem{}Hong, Y. (1997). One-sided testing for conditional heteroscedasticity in time series models. {\it J. Time Ser. Anal.} {\bf 18}, 253-277. \bibitem{}Hong, Y. (2000). Generalized spectral tests for serial dependence. {\it J. R. Statist. Soc. B} {\bf 62}, 557-574. \bibitem{}Hosking, J. (1980). The multivariate portmanteau statistic. {\it J. Amer. Statist. Assoc.} {\bf 75}, 602-608. \bibitem{}Huber, P. J. (1981). {\it Robust Statistics,} Wiley, New York. \bibitem{}Joe, H. (1997), {\it Multivariate Models and Dependence Concepts.} Monographs on Statistics and Applied Probability, {\bf 73}, Chapman \& Hall, London. \bibitem{}Joe, H. , Smith, R.L. and Weissman, I. (1992), Bivariate threshold methods for extremes. {\it Journal of the Royal Statistical Society B,} {\bf 54}, 171-183. \bibitem{}Koch, P. D. and Yang, S. S. (1986). A method for testing the indenpence of two time series that accounts for a potential pattern in the cross-correlation function. {\it J. Amer. Statist. Assoc.} {\bf 81}, 533-544. \bibitem{}Ledford, A.W. and Tawn, J.A. (1997), Modelling dependence within joint tail regions. {\it Journal of the Royal Statistical Society B}, {\bf 59}, 475-499. \bibitem{}Li, W. K. (1988). A goodness-of-fit test in robust time series modelling. {\it Biometrika} {\bf 75}, 355-361. \bibitem{}Li, W. K. and Hui, Y. V. (1994). Robust residual cross correlation tests for lagged relations in time series. {\it J. Statist. Comput. Simulation} {\bf 49}, 103-109. \bibitem{}Ljung, G. M. and Box, G. E. P. (1978) On a measure of lack of fit in time series models. {\it Biometrika} {\bf 65}, 297-303. \bibitem{}McLeod, A. I. (1979). Distribution of the residual cross-crorelation in univariate ARMA time series models. {\it J. Amer. Statist. Assoc.} {\bf 74}, 849-855. \bibitem{}Patton, A.J. (2001), Modelling time-varying exchange rate dependence using the conditional copula. Manuscript, University of California. \bibitem{}Pham, D. T., Roy, R. and Cedras, L. (2003). Tests for non-correlation of two cointegrated ARMA time series.{\it J. Time Ser. Anal., } in press. \bibitem{}Pierce, A. (1977). Lack of dependence among economic variables. {\it J. Am. Statist. Assoc.} {\bf 72}, 11-22. \bibitem{}Pierce, D. A. and Haugh, L. D. (1979). Causality in temporal systems. {\it J. Economic} {\bf 5}, 265-293. \bibitem{}Pierre, D. and Roy, R. (2003). Robust tests for independence of two time series. {\it Statistica Sinica.} {\bf 13}, 827-852. \bibitem{}Priestley, M. B. (1981). {\it Spectral Analysis and Time Series}, {\bf 1, 2}. London:Academic Press. \bibitem{}Rousseeuw, P. J. and Leroy, A. M. (1987) {\it Robust Regression and Outlier Detection.} Wiley, New York. \bibitem{}Satterthwaite, F. E. (1941). Synthesis of variance. {\it Psychmetrica}, {\bf 6}. 309-316. \bibitem{}Serfling, R. (1980). {\it Approximation Theorems of Mathematical Statistics.} New York, Wiley. \bibitem{}Shao, J. and Tu, D. (1995). {\it The Jacknife and Bootstrap}.New York, Springer Verlag. \bibitem{}Shorack, G. R. and Wellner, J. A. (1986). {\it Empirical Processes with Applications to Statistics.} New York, Wiley. \bibitem{}Skaug, H. J. and Tjostheim, D. (1993). A nonparametric test of serial independence based on the empirical distribution function. {\it Biometrika} {\bf 80}, 591-602. \bibitem{}Solomon, Herbert, and Stephens, Michael A. (1977). Distribution of a sum of weighted chi-square variables. {\it J. Am. Statist. Assoc.}, {\bf 72}. 881-885. \bibitem{}Stute, W. and Schumann, G. (1980). The general Glivenko-Cantelli theorem for stationary sequences of random observations. {\it Scand. J. Statist.} {\bf 7}, 102-104. \bibitem{}Tsay, R. S. (2001). {\it Analysis of Financial Time Series}.New York, Wiley. \bibitem{}Tsay, R. S. and Tiao, G. C. (1995). Asymptotic properties of multivariate nonstationary processes with applications to autoregressions. {\it Ann. Statist.} {\bf 18}, 220-250. \bibitem{}Wand, M. P. and Jones, M. C. (1995). {\it Kerneel Smoothing}, London, Chapman and Hall. \bibitem{}Zhang, J. T. (2005). Approximate and asymptotic distribution of chi-squared-type mixtures with applications. {\it J. Am. Statist. Assco.} {\bf 100}, 273-285. \bibitem{}Zhang, Z. and Smith, R.L. (2001), Modelling financial time series data as moving maxima processes. Manuscript, University of North Carolina. \end{thebibliography}
|