跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2025/09/01 13:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃顯弼
研究生(外文):Xhin-Bi Huang
論文名稱:以客體染料摻雜製作高色彩穩定的白色有機發光二極體
論文名稱(外文):Fabrication of high color stability of white OLED by doping with guest dye
指導教授:楊素華楊素華引用關係
指導教授(外文):Su-Hua Yang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:139
中文關鍵詞:能量轉換焠熄效應陷阱
外文關鍵詞:energy transferquench effecttrap
相關次數:
  • 被引用被引用:0
  • 點閱點閱:756
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
我們利用兩種客體材料來分別製作出白光OLED,並且比較白光的穩定性。這兩種材料分別是紅色客體DCJTB與黃色客體Rubrene。我們發現以2.5 wt% Rubrene摻雜Alq3,元件工作時之白光CIE座標相當的穩定;當電壓從9 V增加到14 V時,CIE座標都維持在(0.36, 0.36)。利用能量轉換的機制,使客體Rubrene的能量經由主體Alq3而被激發出來,並且結合TBADN的藍光,達到全波長的白光OLED。這白光OLED元件的結構為: ITO/ NPB (45 nm)/TBADN (30 nm)/Alq3:Rubrene(30 nm, 2.5 wt%)/Al (200 nm)。在電壓為14 V時,亮度是3150 cd/m2, 電流密度為153 mA/cm2。
The white organic light emitting diodes (OLEDs) were fabricated by utilize two kinds of guest materials as emitters. The luminescence stability between white OLEDs was compared and discussed. The guest materials were red DCJTB emitter and yellow Rubrene emitter. We found that when Alq3 was doped with 2.5 wt% of Rubrene, the CIE coordinate of white OLED was considerably stable; when the applied voltage was increased from 9 to 14 V, the CIE coordinates all kept at (0.36, 0.36). Utilizing the energy transfer mechanism, the Rubrene guest gained exciting energy from Alq3 host and emitted subsequently; combining with blue TBADN emissions, the whole wavelength of white OLED was achieved. The structure of the white OLED device was ITO/NPB (45 nm)/TBADN (30 nm)/Alq3:Rubrene(30 nm, 2.5 wt%)/Al (200 nm). At applied voltage of 14 V, the luminance and current density were 3150 cd/m2 and 153 mA/cm2, respectively.
Abstract (in Chinese) IV
Abstract (in English) V
Acknowledgement VII
Content VIII
Table Captions X
Figure Captions XI
Chapter 1 1
Introduction 1
1-1 The backgrounds of OLED 1
1-2 The advantages of OLED 2
1-3 Application of the OLED 3
Chapter 2 4
Electroluminescence principle and device structure 4
2-1 Principle of electroluminescence (EL) 4
2-1-1 Principle of light emission 4
2-1-2 Energy transfer 5
2-2 Structure of the device 8
2-2-1 Multi-layer structure 8
2-2-2 Microcavity structure 8
2-2-3 Microlens structure 10
2-2-4 White OLED structure 12
Chapter 3 13
Experiments and measurement system configuration 13
3-1 Use of organic material and electrode 13
3-1-1 Holes transport layer 13
3-1-2 Electron transport layer 14
3-1-3 Organic emission layer 14
3-1-4 The anode material 16
3-1-5 The cathode material 16
3-2 Fabrication processes of the devices 17
3-3 Measure the system 20
3-4 Efficiency calculation 20
Chapter 4 22
Results and discussion 22
4-1 Characteristics of DCJTB doped into different host emitters 22
4-1-1 The undoped DCJTB emission layer 22
4-1-2 The DCJTB doped Alq3 emission layer 25
4-1-3 The DCJTB doped TBADN emission layer 29
4-1-4 The DCJTB doped NPB emission layer 33
4-2 Characteristics of Rubrene doped into different host emitters 37
4-2-1 The undoped Rubrene emission layer 38
4-2-2 The Rubrene doped NPB emission layer 40
4-2-3 The Rubrene doped TBADN emission layer 44
4-2-4 The Rubrene doped Alq3 emission layer 48
4-3 Compare DCJTB with Rubrene characteristic of the devices 52
Chapter 5 53
Conclusion 53
References 55
Publication list 61
[1]Gang Cheng, Yingfang Zhang, Yi Zhao, Shiyong Liu, Yuguang Ma, “Improved efficiency for white organic light-emitting devices based on phosphor sensitized fluorescence”, Appl. Phys. Lett., 88, 083512 (2006).
[2] M. Pope, H. Kallman, P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys., 38, pp.2042 (1963).
[3] C. W. Tang, S. A. VanSlyke, “Organic electroluminanescent diode”, Appl. Phys. Lett., 51, pp.913-915 (1987).
[4]陳金鑫, 黃孝文, “有機電激發光材料與元件”, 2006. 01.
[5]楊政鴻, “上發光型有機發光二極體之結構設計與光電特性分析”, 國立彰化師範大學光電科技研究所碩士學位論文, 9606.
[6] Hiroshi Kanno, Yuji Hamada, Hisakazu Takahashi, “Development of OLED with high stability and luminance efficiency by co-doping methods for full color display”, IEEE J. Select. Topic. Quantum Elect., Vol. 10, No. 1, JANUARY/FEBRUARY (2004).
[7] C. H. Chuen, Y. T. Tao, “Highly-bright white organic light-emitting diodes based on a single emission layer”, Appl. Phy. Lett. Vol. 81, number 24, (2002).
[8]Y. B. Yoon, H. W. Yang, D. C. Choo, T. W. Kim, H. S. Oh, “Luminescence mechanisms of green and blue organic light-emitting devices utilizing hole-blocking layers”, Solid State Communications 134 (2005) 367-372.
[9]H. W. Yang, Y. B. Yoon, T. W. Kim, K. D. Kwack, J. H. Kim, J. H. Seo, Y. K. Kim, “Enhancement of the efficiency and the color stabilization of organic light-emitting devices fabricated utilizing stepwise doped hole transport layers”, Solid State Communications 137 (2006) 87-90.
[10]Kouji Tamano, Don-Chan Cho, Tatsuo Mori, Teruyoshi Mizutani, Masato Sugiyama, “Enhancement of hole injection by metal anode in organic light-emitting diodes”, Thin Solid Films, 438-439, (2003), 182-186.
[11]S. F. Alvarado, P. F. Seidler, D. G. Lidzey, D. D. C. Bradley. “Direct Determination of the Exciton Binding Energy of Conjugated Polymers Using a Scanning Tunneling Microscope”, Phys. Rev. Lett. 81, (1998).
[12] G. Destriau, J. Chem. Phys., 33, 587 (1936).
[13] M. Klessinger, J. Michl, “Excited states and Photochemistry of Organic Molecules,” VCH Publishers, New York (1995).
[14] H. Riel, S. Karg, T. Beierlein, W. Ries and K. Neyts, “Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: an experimental and theoretical study,” J. Appl. Phys., vol. 94, pp. 5290-5296, (2003).
[15] H. J. Peng, X. L. Zhu, J. X. Sun, X. M. Yu, M. Wong and H. S. Kwok, “High Efficiency Electrophosphorescent Organic Light Emitting Diodes using Semitransparent Ag as Anode,” SID Digest, pp. 1066-1069 (2005).
[16] H. J. Peng, M. Wong and H. S. Kwok, “Design and Characterization of Organic Light Emitting Diodes with Microcavity Structure,” SID DIGEST, pp. 516-520, (2003).
[17] Shizuo Tokito, Tetsuo Tsutsui, and Yasunori Taga. “Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys., Vol. 86, pp. 2407~2411, (1999).
[18] N. Takada, T. Tsutsui, S. Saito. “Control of emission characteristics in organic thin-film electroluminescent diodes using an optical-microcavity structure,” Appl. Phys. Lett., 63, pp. 2032~2034, (1993).
[19] H. J. Peng, Y. L. Ho, C. F. Qiu, M. Wong and H. S. Kwok, “Coupling Efficiency Enhancement of Organic Light Emitting Devices with Refractive Microlens Array on High Index Glass Substrate,” SID Digest, 2004.
[20]蘇宜玲,鍾明昌,魏茂國和林宏彝, “微透鏡陣列應用於有機發光元件之探討”,台灣顯示科技研討會,台灣台北, pp. 266-269, 2004.
[21] H. P. Herzig, “Micro-Optics: elements, systems and applications,” Taylor & Francis, (1997).
[22] N. F. Borrelli, “Microoptics Technology-Fabrication and application of lens arrays and devices,” Marcel Dekker, (1999).
[23]王述宜, “準分子雷射加工製作非球面微透鏡陣列之研究,” 行政院國家科學委員會專題, (2002).
[24]王述宜, 黃永翔, 陳建宇, 羅德亨, “準分子雷射三次元加工之研究,” 第十六屆全國機械工程學術研討會論文集, pp. 29~36, (1999).
[25]周敏傑, “雷射基本的原理與性質,” 機械工業雜誌, 二月號, pp. 92-96, (1997).
[26] N. S. Ong, Y. H. Koh, Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectronic Engineering, pp.365~379, (2002).
[27] Sihai Chen, Xinjian Yi, Hong Ma, “A novel method of fabrication of microlens arrays,” Infrared Physics & Technology, pp.133~135, (2003).
[28] A. Sayah, V. K. Parashar, M. A. M. Gijs, “Micro-replication of optical lenses in glass using a novel Sol Gel technology,” IEEE, Micro Electro Mechanical Systems Conference, Las Vegas, pp. 516~519, (2001).
[29] S. A. VanSlyke, C. W. Tang, L. C. Roberts, US 4, 720, 432, (1988).
[30] S. A. VanSlyke, C. W. Tang, “Electroluminescent device with organic electroluminescent medium,” US 5,061,569 (1991).
[31]H. Kanno, Y. Hamada, H. Takahashi, “Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays,” IEEE J. Select. Topic. Quantum Elect., 10, pp.30-36 (2004).
[32]L. S. Hung and C. H. Chen, Mater. Sci. Eng., R. 39, 143 (2002).
[33]X. L. Zhu, J. X. Sun, H. J. Peng, Z. G. Meng, M. Wong, and H. S. Kwok, “Efficient organic light-emitting diodes using polycrystalline silicon thin films as semitransparent anode, ” APPLIED PHYSICS LETTERS 87, 083504 (2005).
[34]Fabio Cicoira, Jill A. Miwa, Dmitrii F. Perepichka, Federico Rosei, “Molecular Assembly of Rubrene on a Metal/Metal Oxide Nanotemplate,” J. Phys. Chem. A 2007, 111, 12674-12678.
[35]T. Ishida, H. Kobayashi, Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements,” J. Appl. Phys., 73, pp.4344-4350 (1993).
[36]M. Bender, J. Trube, j. Stollenwerk, “Characterization of a RF/dc-magnetron discharge for the sputter deposition of transparent and highly conductive ITO films,” Appl. Phys. A, 69, pp.397-401 (1999).
[37]T. Futagami, Y. Shigesato, T. Yasui, “Characterization of RF-enhanced DC sputtering to deposit thi-doped indium oxide thin films,” Jpn. J. Appl. Phys. Part 1, 37, pp.6210-6214 (1998).
[38]Deang Liu, Michael Fina, Jinghua Guo, Xiaobo Chen, Gao Liu, Stephen G. Johnson, Samuel S. Mao, “Organic light-emitting diodes with carbon nanotube cathode-organic interface layer”, APPLIED PHYSICS LETTERS 94, 013110 (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top