[1]P. Griss, P. Enoksson, H. K. Tolvanen-Laakso, P. Meriläinen, S. Ollmar, and G. Stemme, “Micromachined Electrodes for Biopotential Measurements,” Journal of Microelectromechanical Systems, vol.10, pp.10-16, 2001.
[2]L. M. Yu, F. E. H. Tay, D. G. Guo, L. Xu, K. L. Yap, “A microfabricated electrode with hollow microneedles for ECG measurement,” Sensors and Actuators A, vol.151, pp.17–22, 2009.
[3]R. Ma, D. H. Kim, M. McCormick, T. Coleman and J. Rogers, “A Stretchable Electrode Array for Non-invasive, Skin-Mounted Measurement of Electrocardiography (ECG), Electromyography (EMG) and Electroencephalography (EEG),” Engineering in Medicine and Biology Society, 2010.
[4]C. T. Lin, L. D. Liao, Y. H. Liu, I. J. Wang, B. S. Lin, and J. Y. Chang, “Novel Dry Polymer Foam Electrodes for Long-Term EEG Measurement,” IEEE Transactions on Biomedical Engineering, vol.58, pp.1200-1207, 2011.
[5]C. Grozea, C. D. Voinescu, and S. Fazli, “Bristle-sensors-low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications,” Journal of Neural Engineering, vol.8, 025008, 2011.
[6]P. Griss, P. Enoksson, G. Stemme, “Micromachined barbed spikes for mechanical chip attachment,” Sensors and Actuators A, vol.95, pp.94–99, 2002.
[7]T. A. Fofonoff, S. M. Martel, N. G. Hatsopoulos, J. P. Donoghue, and I. W. Hunter, “Microelectrode Array Fabrication by Electrical Discharge Machining and Chemical Etching,” Transactions on Biomedical Engineering, vol.51, pp.890-895, 2004.
[8]H. Takahashi, J. Suzurikawa, M. Nakao, F. Mase, and K. Kaga, “Easy-to-prepare assembly array of tungsten microelectrodes,” IEEE Transactions on Biomedical Engineering, vol.52, pp.952-956, 2005.
[9]W. C. Ng, H. L. Seet, K. S. Lee, N. Ning, W. X. Tai, M. Sutedja, J. Y. H. Fuh, X. P. Li, “Micro-spike EEG electrode and the vacuum-casting technology for mass production,” Journal of Materials Processing Technology, vol.209, pp.4434-4438, 2009.
[10]R. Bhandari, S. Negi, L. Rieth, F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable MEMS structures,” Sensors and Actuators A, vol.162, pp.130–136, 2010.
[11]R. Wang, W. Zhao, W. Wang, and Z. Li, “Fabrication and properties of 3d flexible parylene-based microelectrode array with silicon tips,” Micro Electro Mechanical Systems 2011, pp.253-256, 2011.
[12]J. Ha, J. Park, S. Bai, Y. Kim, and S. Lee, “Fabrication and measurements of high aspect ratio conductive microtip array with localized ultra-micro electrode at the tip end,” Micro Electro Mechanical System 2012, pp. 235-238, 2012.
[13]P. Salvo, R. Raedt, E. Carrette, D. Schaubroeck, J. Vanfleteren, and L. Cardon, “A 3D printed dry electrode for ECG/EEG recording,” Sensors and Actuators A, vol.174, pp.96-102, 2012.
[14]S. D. Senturia, Microsystem Design, Kluwer Academic Publishers, 2001.
[15]M. Madou, Fundamentals of Microfabrication, Ron Powers Publisher, 2002.
[16]B. Schwartz, and H. Robbins, “Chemical etching of silicon-I. The system, HF, HNO3 and H2O,” Journal of The Electrochemical Society, vol.107, pp.1020-1022, 1960.
[17]H. Robbins, and B. Schwartz, “Chemical etching of silicon-II. The system, HF, HNO3 H2O and HC2C3O2,” Journal of The Electrochemical Society, vol.107, pp.108-111, 1960.
[18]H. Robbins, and B. Schwartz, “Chemical etching of silicon-III. A temperature study in the acid system,” Journal of The Electrochemical Society, vol.108, pp.365-372, 1961.
[19]B. Schwartz, and H. Robbins, “Chemical etching of silicon-IV. Etching technoloty,” Journal of The Electrochemical Society, vol.123, pp.1903-1909, 1976.
[20]K. E. Bean, “Anisotropic etching of silicon,” IEEE Transactions on Electron Devices,” vol.25, pp.1185-1193, 1978.
[21]H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline-solutions.1. orientation dependence and behavior of passivation layers,” Journal of The Electrochemical Society, vol.137, pp.3612-3626, 1990.
[22]E. D. Palik, H. F. Gray, and P. B. Klein, “A Raman study of etching silicon in aqueous KOH,” Journal of The Electrochemical Society, vol.130, pp.956-959, 1983.
[23]O. Powell, and H. B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon,” Journal of Micromechanics and Microengineering, vol.11, pp.217-220, 2001.
[24]I. Barycka, and I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sensors and Actuators A, vol.48, pp.229-238, 1995.
[25]I. Zubel, and I. Barycka, “Silicon anisotropic etching in alkaline solutions I. The geometric description of figures developed under etching Si(100) in various solutions,” Sensors and Actuators A, vol.70, pp.250-259, 1998.
[26]I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sensors and Actuators A, vol.84, pp.116-125, 2000.
[27]I. Zubel, and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A, vol.93, pp.138-147, 2001.
[28]Y. J. Yang, and B. T. Liao, "A novel 4×4 optical switch using an anisotropically-etched micro-mirror array and a bi-stable mini-actuator array," IEEE Photonics Technology Letters, vol.21, pp.115-117, 2009.
[29]M. A. Gosalvez, B. Tang, P. Pal, K. Sato, Y. Kimura, K. Ishibashi, “Orientation- and concentration-dependent surfactant adsorption on silicon in aqueous alkaline solutions: explaining the changes in the etch rate, roughness and undercutting for MEMS applications,” Journal of Micromechanics and Microengineering, vol.19, 125011, 2009.
[30]B. Tang, and K. Sato, “Formation of silicon nano tips using post sam-based wet etching,” Solid-State Sensors, Actuators and Microsystems Conference (Transducers) 2011, pp.602-605, 2011.
[31]B. Tang, K. Sato, H. Tanaka, and M. A. Gosalvez, “Fabrication of sharp tips with high aspect ratio by surfactant-modified wet etching for the AFM probe,” Micro Electro Mechanical Systems 2011, pp.328-331, 2011.
[32]T. Burns, S. Breathnach, N. Cox, C. Griffiths, Rook''s Textbook of Dermatology, Blackwell Publish, 2010.
[33]S. Henry, D. V. McAllister, M. G. Allen, and M. R. Prausnitz, “Micromachined Needles For The Transdermal Delivery of Drugs,” Micro Electro Mechanical Systems 1998, pp.494-498, 1998.
[34]Etch3DTM User Guide, Coventor, Inc., 2006.
[35]J. P. Biersack, and L. G. Haggmark, “A Monte Carlo computer program for the transport of energetic ions in amorphous targets,” Nuclear Instruments and Methods, vol.174, pp.257-269, 1980.
[36]A. J. Nijdam, E. van Veenendaal, H. M. Cuppen, J. van Suchtelen, M. L. Reed, J. Gardeniers, W. van Enckevort, E. Vileg, and M. Elwenspoek, “Formation and stabilization of pyramidal etch hillocks on silicon {100} in anisotropic etchants: Experiments and Monte Carlo simulation,” vol.89, pp.4113-4123, 2001.
[37]M. A. Gosalvez, R. M. Nieminen, P. Kilpinen, E. Haimi, and V. Lindroos, “Atomistic wet chemical etching of crystalline silicon: atomistic Monte-Carlo simulations and experiments,” Applied Surface Science, vol.178, pp.7-26, 2001.
[38]H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” Journal of Micromechanics and Microengineering, vol.7, pp.121-124, 1997.
[39]R. Feng, and R. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” Journal of Micromechanics and Microengineering, vol.13, pp.80-88, 2003.
[40]G. Liu, Y. Tian, and Y. Kan, “Fabrication of high-aspect-ratio microstructures using SU8 photoresist,” Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol.11, pp.343-346, 2005.
[41]G. Ensell, “Alignment of mask patterns to crystal orientation,” Sensors and Actuators A, vol.53, pp.345-348, 1996.
[42]M. Vangbo and Y. Backlund, "Precise mask alignment to the crystallographic orientation of silicon wafers using wet anisotropic etching," Journal of Micromechanics and Microengineering, vol. 6, pp. 279-284, 1996.
[43]J. M. Lai, W. H. Chieng, and Y. C. Huang, "Precision alignment of mask etching with respect to crystal orientation," Journal of Micromechanics and Microengineering, vol. 8, pp. 327-329, 1998.
[44]楊勝安, “電磁驅動式聚合酶連鎖反應微晶片系統之開發”,國立台灣大學機械工程研究所碩士論文,2008.[45]G. C. Schwartz, and P. M. Schaible, “Reactive ion etching of silicon,” Journal of Vacuum Science and Technology, vol.16, pp.410-413, 1979.
[46]G. S. Oehrlein, Y. Zhang, D. Vender, and O. Joubert, “Fluorocarbon high-density plasmas .2. Silicon dioxide and silicon etching using CH4 and CHF3,” Journal of Vacuum Science and Technology A, vol.12, pp.333-344, 1994.