跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/04 19:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭哲希
研究生(外文):Che-Hsi Kuo
論文名稱:微機電技術應用於倒鉤狀乾式腦電波電極之研製
論文名稱(外文):Development of Barbed Dry EEG Electrodes Using MEMS Technology
指導教授:楊燿州楊燿州引用關係
口試委員:楊天祥陳國聲曾同慶蘇裕軒
口試日期:2012-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:79
中文關鍵詞:腦電波倒鉤狀乾式電極濕蝕刻微機電技術
外文關鍵詞:EEGbarbeddry electrodewet etchingMEMS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:510
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究設計並製作具有倒鉤狀探針的乾式電極,以用於生理電訊號如腦電波之擷取。與傳統濕式電極相較,乾式電極的主要優點是不需導電凝膠之使用,所以不會因導電凝膠逐漸乾燥而使量測訊號品質隨著時間降低,較利於進行長時間量測。為了使本研究開發之探針狀電極可直接刺穿角質層以降低皮膚角質所造成的高阻抗,並避免電極刺及皮膚的真皮層造成使用者感受到疼痛不適,本研究探針之設計的電極探針長度設計於50~100μm之間,以符合人體角質層厚度約10~15μm,表皮層厚度約50~100μm的條件。由於是倒鉤的幾何形狀,電極刺入皮膚後,移除電極所需的力量會增加,可加強電極的附著能力及量測時的穩定性。電極之製作皆以濕蝕刻技術為主,其優點為製作方法簡單、設備需求及製程成本低。我們也利用蝕刻模擬軟體Etch3DTM進行蝕刻模擬,協助濕蝕刻製程之參數規劃。製作過程首先以添加異丙醇之氫氧化鉀蝕刻液製做出探針狀電極,探針平均長度為81μm。初步電極完成之後,則利用光阻旋轉塗佈與對位黃光微影技術,將蝕刻遮罩成功製作於電極之上。本研究使用之蝕刻遮罩材料為負光阻SU-8 2050,其材料優點為可抵抗化學蝕刻並能夠容易定義遮罩形狀。光阻保護遮罩有方形與蝕刻孔式兩種設計。完成後的方形遮罩,其邊長約150μm,高度約120μm。蝕刻孔式遮罩則為利用半徑65μm的半圓形孔洞做為蝕刻孔,其餘部分皆受光阻保護。遮罩完成後,將硝酸與氫氟酸混和做為等向性蝕刻溶液,進行探針倒鉤狀蝕刻成型。利用方形遮罩所完成的倒鉤探針電極,其長度85μm,寬度最寬處21μm,最窄處11μm;蝕刻孔式遮罩完成的探針,長度81μm,寬度最寬處20μm,最窄處12μm。

In this work, barbed dry electrodes are designed and fabricated by MEMS technology for biopotential measurement such as EEG. Compared to the traditional wet electrodes, the dry electrodes do not need electrolytic gel to reduce the impedance between skin and electrodes, so dry electrodes are more suitable for long-term measurement. Our proposed dry electrodes consist of arrays of miniaturized spikes. These spikes are designed for penetrating human skin so that the high impedance problems associated with layers of the outer skin can be resolved. We design the electrodes 50-100μm in length to avoid the painful or uncomfortable feeling during the measurement. The fabrication of electrodes is based on wet etching, which is simple and low cost. The simulation software Etch3DTM is used to evaluate the fabrication parameters of the wet etching. The spikes are fabricated by KOH. Subsequently, the photoresist is patterned as the etching mask on the spikes, and then etched in the solution mixed with HNO3 and HF. The fabricated barbed electrodes are 81μm in length, and widest and narrowest width is 20μm and 12μm, respectively.

致謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 腦電波電極 1
1.2.2 乾式電極製程方法 6
1.3 研究動機與目的 18
1.4 論文架構 19
第二章 理論與設計 20
2.1 濕蝕刻原理 20
2.1.1 等向性濕蝕刻 21
2.1.2 非等向性蝕刻 22
2.2 電極設計規劃與限制 24
2.3 電極蝕刻模擬 26
2.3.1 Etch3DTM軟體簡介 26
2.3.2 蝕刻模擬 27
第三章 製程方法與步驟 30
3.1 製作流程規劃 30
3.2 製程技術與原理 32
3.2.1 光罩設計與製作 32
3.2.2 晶格方向對準 33
3.2.3 晶圓清洗 35
3.2.4 微影製程 36
3.2.5 反應離子蝕刻 41
3.2.6 晶圓切割 42
3.2.7 非等向性濕蝕刻 43
3.2.8 等向性濕蝕刻 43
第四章 實驗結果與討論 44
4.1 製作結果 44
4.2 蝕刻時間與倒鉤電極成形探討 47
4.3 倒鉤電極蝕刻方法改良 52
4.4 模擬與蝕刻差異討論 58
第五章 結論與未來展望 61
5.1 結論 61
5.2 未來展望 62
參考文獻 64
附錄A 70
附錄B 76


[1]P. Griss, P. Enoksson, H. K. Tolvanen-Laakso, P. Meriläinen, S. Ollmar, and G. Stemme, “Micromachined Electrodes for Biopotential Measurements,” Journal of Microelectromechanical Systems, vol.10, pp.10-16, 2001.
[2]L. M. Yu, F. E. H. Tay, D. G. Guo, L. Xu, K. L. Yap, “A microfabricated electrode with hollow microneedles for ECG measurement,” Sensors and Actuators A, vol.151, pp.17–22, 2009.
[3]R. Ma, D. H. Kim, M. McCormick, T. Coleman and J. Rogers, “A Stretchable Electrode Array for Non-invasive, Skin-Mounted Measurement of Electrocardiography (ECG), Electromyography (EMG) and Electroencephalography (EEG),” Engineering in Medicine and Biology Society, 2010.
[4]C. T. Lin, L. D. Liao, Y. H. Liu, I. J. Wang, B. S. Lin, and J. Y. Chang, “Novel Dry Polymer Foam Electrodes for Long-Term EEG Measurement,” IEEE Transactions on Biomedical Engineering, vol.58, pp.1200-1207, 2011.
[5]C. Grozea, C. D. Voinescu, and S. Fazli, “Bristle-sensors-low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications,” Journal of Neural Engineering, vol.8, 025008, 2011.
[6]P. Griss, P. Enoksson, G. Stemme, “Micromachined barbed spikes for mechanical chip attachment,” Sensors and Actuators A, vol.95, pp.94–99, 2002.
[7]T. A. Fofonoff, S. M. Martel, N. G. Hatsopoulos, J. P. Donoghue, and I. W. Hunter, “Microelectrode Array Fabrication by Electrical Discharge Machining and Chemical Etching,” Transactions on Biomedical Engineering, vol.51, pp.890-895, 2004.
[8]H. Takahashi, J. Suzurikawa, M. Nakao, F. Mase, and K. Kaga, “Easy-to-prepare assembly array of tungsten microelectrodes,” IEEE Transactions on Biomedical Engineering, vol.52, pp.952-956, 2005.
[9]W. C. Ng, H. L. Seet, K. S. Lee, N. Ning, W. X. Tai, M. Sutedja, J. Y. H. Fuh, X. P. Li, “Micro-spike EEG electrode and the vacuum-casting technology for mass production,” Journal of Materials Processing Technology, vol.209, pp.4434-4438, 2009.
[10]R. Bhandari, S. Negi, L. Rieth, F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable MEMS structures,” Sensors and Actuators A, vol.162, pp.130–136, 2010.
[11]R. Wang, W. Zhao, W. Wang, and Z. Li, “Fabrication and properties of 3d flexible parylene-based microelectrode array with silicon tips,” Micro Electro Mechanical Systems 2011, pp.253-256, 2011.
[12]J. Ha, J. Park, S. Bai, Y. Kim, and S. Lee, “Fabrication and measurements of high aspect ratio conductive microtip array with localized ultra-micro electrode at the tip end,” Micro Electro Mechanical System 2012, pp. 235-238, 2012.
[13]P. Salvo, R. Raedt, E. Carrette, D. Schaubroeck, J. Vanfleteren, and L. Cardon, “A 3D printed dry electrode for ECG/EEG recording,” Sensors and Actuators A, vol.174, pp.96-102, 2012.
[14]S. D. Senturia, Microsystem Design, Kluwer Academic Publishers, 2001.
[15]M. Madou, Fundamentals of Microfabrication, Ron Powers Publisher, 2002.
[16]B. Schwartz, and H. Robbins, “Chemical etching of silicon-I. The system, HF, HNO3 and H2O,” Journal of The Electrochemical Society, vol.107, pp.1020-1022, 1960.
[17]H. Robbins, and B. Schwartz, “Chemical etching of silicon-II. The system, HF, HNO3 H2O and HC2C3O2,” Journal of The Electrochemical Society, vol.107, pp.108-111, 1960.
[18]H. Robbins, and B. Schwartz, “Chemical etching of silicon-III. A temperature study in the acid system,” Journal of The Electrochemical Society, vol.108, pp.365-372, 1961.
[19]B. Schwartz, and H. Robbins, “Chemical etching of silicon-IV. Etching technoloty,” Journal of The Electrochemical Society, vol.123, pp.1903-1909, 1976.
[20]K. E. Bean, “Anisotropic etching of silicon,” IEEE Transactions on Electron Devices,” vol.25, pp.1185-1193, 1978.
[21]H. Seidel, L. Csepregi, A. Heuberger, H. Baumgartel, “Anisotropic etching of crystalline silicon in alkaline-solutions.1. orientation dependence and behavior of passivation layers,” Journal of The Electrochemical Society, vol.137, pp.3612-3626, 1990.
[22]E. D. Palik, H. F. Gray, and P. B. Klein, “A Raman study of etching silicon in aqueous KOH,” Journal of The Electrochemical Society, vol.130, pp.956-959, 1983.
[23]O. Powell, and H. B. Harrison, “Anisotropic etching of {100} and {110} planes in (100) silicon,” Journal of Micromechanics and Microengineering, vol.11, pp.217-220, 2001.
[24]I. Barycka, and I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sensors and Actuators A, vol.48, pp.229-238, 1995.
[25]I. Zubel, and I. Barycka, “Silicon anisotropic etching in alkaline solutions I. The geometric description of figures developed under etching Si(100) in various solutions,” Sensors and Actuators A, vol.70, pp.250-259, 1998.
[26]I. Zubel, “Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si(100) anisotropic etching in KOH and KOH+IPA solutions,” Sensors and Actuators A, vol.84, pp.116-125, 2000.
[27]I. Zubel, and M. Kramkowska, “The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensors and Actuators A, vol.93, pp.138-147, 2001.
[28]Y. J. Yang, and B. T. Liao, "A novel 4×4 optical switch using an anisotropically-etched micro-mirror array and a bi-stable mini-actuator array," IEEE Photonics Technology Letters, vol.21, pp.115-117, 2009.
[29]M. A. Gosalvez, B. Tang, P. Pal, K. Sato, Y. Kimura, K. Ishibashi, “Orientation- and concentration-dependent surfactant adsorption on silicon in aqueous alkaline solutions: explaining the changes in the etch rate, roughness and undercutting for MEMS applications,” Journal of Micromechanics and Microengineering, vol.19, 125011, 2009.
[30]B. Tang, and K. Sato, “Formation of silicon nano tips using post sam-based wet etching,” Solid-State Sensors, Actuators and Microsystems Conference (Transducers) 2011, pp.602-605, 2011.
[31]B. Tang, K. Sato, H. Tanaka, and M. A. Gosalvez, “Fabrication of sharp tips with high aspect ratio by surfactant-modified wet etching for the AFM probe,” Micro Electro Mechanical Systems 2011, pp.328-331, 2011.
[32]T. Burns, S. Breathnach, N. Cox, C. Griffiths, Rook''s Textbook of Dermatology, Blackwell Publish, 2010.
[33]S. Henry, D. V. McAllister, M. G. Allen, and M. R. Prausnitz, “Micromachined Needles For The Transdermal Delivery of Drugs,” Micro Electro Mechanical Systems 1998, pp.494-498, 1998.
[34]Etch3DTM User Guide, Coventor, Inc., 2006.
[35]J. P. Biersack, and L. G. Haggmark, “A Monte Carlo computer program for the transport of energetic ions in amorphous targets,” Nuclear Instruments and Methods, vol.174, pp.257-269, 1980.
[36]A. J. Nijdam, E. van Veenendaal, H. M. Cuppen, J. van Suchtelen, M. L. Reed, J. Gardeniers, W. van Enckevort, E. Vileg, and M. Elwenspoek, “Formation and stabilization of pyramidal etch hillocks on silicon {100} in anisotropic etchants: Experiments and Monte Carlo simulation,” vol.89, pp.4113-4123, 2001.
[37]M. A. Gosalvez, R. M. Nieminen, P. Kilpinen, E. Haimi, and V. Lindroos, “Atomistic wet chemical etching of crystalline silicon: atomistic Monte-Carlo simulations and experiments,” Applied Surface Science, vol.178, pp.7-26, 2001.
[38]H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, “SU-8: a low-cost negative resist for MEMS,” Journal of Micromechanics and Microengineering, vol.7, pp.121-124, 1997.
[39]R. Feng, and R. Farris, “Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings,” Journal of Micromechanics and Microengineering, vol.13, pp.80-88, 2003.
[40]G. Liu, Y. Tian, and Y. Kan, “Fabrication of high-aspect-ratio microstructures using SU8 photoresist,” Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, vol.11, pp.343-346, 2005.
[41]G. Ensell, “Alignment of mask patterns to crystal orientation,” Sensors and Actuators A, vol.53, pp.345-348, 1996.
[42]M. Vangbo and Y. Backlund, "Precise mask alignment to the crystallographic orientation of silicon wafers using wet anisotropic etching," Journal of Micromechanics and Microengineering, vol. 6, pp. 279-284, 1996.
[43]J. M. Lai, W. H. Chieng, and Y. C. Huang, "Precision alignment of mask etching with respect to crystal orientation," Journal of Micromechanics and Microengineering, vol. 8, pp. 327-329, 1998.
[44]楊勝安, “電磁驅動式聚合酶連鎖反應微晶片系統之開發”,國立台灣大學機械工程研究所碩士論文,2008.
[45]G. C. Schwartz, and P. M. Schaible, “Reactive ion etching of silicon,” Journal of Vacuum Science and Technology, vol.16, pp.410-413, 1979.
[46]G. S. Oehrlein, Y. Zhang, D. Vender, and O. Joubert, “Fluorocarbon high-density plasmas .2. Silicon dioxide and silicon etching using CH4 and CHF3,” Journal of Vacuum Science and Technology A, vol.12, pp.333-344, 1994.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊