跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃建嵐
研究生(外文):Chien-lan Huang
論文名稱:新型三階零電壓切換電源轉換器之研究
論文名稱(外文):Analysis and Implementation of Novel Three-level Zero-Voltage-Switching Converter
指導教授:林伯仁
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:124
中文關鍵詞:倍流整流三階電源轉換器零電壓切換交錯式電源轉換器
外文關鍵詞:Interleaved converterCurrent doubler rectifierThree-levelZero-voltage-switching (ZVS)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:447
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出兩種不同電路架構之三階交錯式PWM零電壓切換電源轉換器,利用開關串聯方式降低開關元件的電壓應力,輸入端串聯電容結合快速回復二極體在變壓器上產生三種電壓準位。電路的主動開關元件皆可達成零電壓切換,降低開關切換損失。主動箝位零電壓切換技術乃利用開關上的介面電容(Coss)與變壓器的漏電感,在開關導通前產生諧振迴路達到零電壓切換,可有效降低開關的切換損失並箝制開關元件上的突波電壓,提高電路轉換效率。電源轉換器採用交錯式設計可由兩個電源轉換模組平均提供輸出負載功率,輸入與輸出端的電流可由兩個電源模組平均提供,降低電路元件的電流應力,減少輸入與輸出端的電流漣波。電源轉換器的變壓器二次側整流電路採用倍流整流架構,可提供負載端穩定且低電流漣波的電源,且變壓器二次側線圈繞組與濾波電感的最大電流僅為輸出電流的一半,可降低變壓器與的製造成本與體積。倍流整流架構可利用兩個輸出電感電流漣波相加後相互抵消的特性,達到低輸出電流漣波的優點,降低輸出濾波電容器的需求。本論文結合交錯式技術、主動箝位技術與三階開關低電壓應力的特點,提出兩種不同主動箝位方式的高效率電源轉換器架構,並分別探討電路架構模式分析、電路穩態分析、設計考量、實驗電路元件設計、實驗波形說明與電腦模擬結果。
This dissertation proposes two kinds of interleaved zero-voltage-switching (ZVS) three-level pulse-width modulation converters with current doubler rectifier. The switches connected in series is adopted to reduce the voltage stress on switches. One fast recovery diode is connected between the middle point of split capacitors and power switch to generate three different voltage levels on the primary side of transformer. All switches can achieve ZVS turn-on at the resonant interval based on the junction capacitance of switches and transformer leakage inductance. Thus the switching losses of power switches can be reduced. The interleaved PWM scheme is used to achieve load current sharing, reduce the ripple current on the input side and regulate the output voltage. The current doubler rectifier is adopted in the secondary side of transformer to reduce the current stress on the transformer secondary winding and achieve the ripple current cancellation on the output capacitor. The advantages of proposed converters are low voltage stresses on switches, low current stresses on switches and diodes and high efficiency. In the dissertation, operation principle, steady state analysis and design consideration of the presented converter are analyzed. Finally, the experimental results are presented to verify the operation principle of the proposed converter.
目 錄
中文摘要………………………………………………………………………………i
英文摘要……………………………………………………………………………ii
誌謝…………………………………………………………………………………iii
目錄…………………………………………………………………………………v
表目錄………………………………………………………………………………vii
圖目錄………………………………………………………………………………viii
符號說明…………………………………………………………………………x
第一章 緒論………………………………………………………………………1
1-1 研究背景與動機………………………………………………………………1
1-2 研究內容簡介…………………………………………………………………2
1-3 論文大綱………………………………………………………………………3
第二章 切換式電源轉換……………………………………………………………4
2-1 前言……………………………………………………………………………4
2-2 隔離式電源轉換器……………………………………………………………4
2-3 主動箝位與倍流整流技術………………………………………………………5
2-4 交錯式技術……………………………………………………………………8
2-5 三階電源轉換器………………………………………………………………9
第三章 三階主動箝位交錯式電源轉換器…………………………………………12
3-1 前言……………………………………………………………………………12
3-2 電路模式分析…………………………………………………………………13
3-3 電路穩態分析………………………………………………………………27
3-4 電路元件參數設計…………………………………………………………29
3-5 實驗電路設計步驟……………………………………………………………33
3-6 實驗結果………………………………………………………………37
第四章 三階交錯式直流/直流電源轉換器…………………………………………58
4-1 前言………………………………………………………………58
4-2 電路模式分析………………………………………………………………59
4-3 電路穩態分析……………………………………………………………………68
4-4 電路元件參數設計…………………………………………………………70
4-5實驗電路設計步驟……………………………………………………………74
4-6實驗結果…………………………………………………………………78
第五章 結論與未來研究方向……………………………………………………99
5-1結論……………………………………………………………………………99
5-2未來研究方向……………………………………………………100
參考文獻……………………………………………………………………………101
作者簡介……………………………………………………………………………107
[1] S. H. Park, G.R. Cha, Y. C. Jung and C. Y. Won, “Design and application for PV generation system using a soft-switching boost converter with SARC,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 515-522, 2010.
[2] J. H. Park and B. H. Cho, “Nonisolation soft-switching buck converter with tapped-inductor for wide-input extreme step-down applications,” IEEE Trans. Circuits and Systems I, vol. 54, no. 8, pp. 1809-1818, 2007.
[3] Y. F. Huang, C. W. Liu and Y. Konishi, “Soft-switching PWM full-bridge DC-DC converter with energy recovery transformer and auxiliary passive lossless snubbers,” Proc. IEEE INTELEC Conf., 2007, pp. 622-627.
[4] S. R. Park, S. H. Park, C. Y. Won and Y. C. Jung, “Low loss soft switching boost converter,” Proc. IEEE PEMC Conf., 2008, pp. 181-186.
[5] X. K. Wu, J. M. Zhang, X. Ye and Z. M. Qian, “Analysis and derivations for a family ZVS converter based on a new active clamp ZVS cell,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 773-781, 2008.
[6] C. M. Wang, C. H. Su, M. C. Jiang and Y. C. Lin, “A ZVS-PWM single-phase inverter using a simple ZVS-PWM commutation cell,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 758-766, 2008.
[7] S. S. Lee and G. W. Moon, “Full ZVS range transient current buildup half-bridge converter with different ZVS operations to load variation,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2557-2559, 2008.
[8] B. R. Lin, C. L. Huang and J. F. Wan, “Analysis, design, and implementation of a parallel ZVS converter,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1586-1594, 2008.
[9] Y. Gu, Z. Lu, Z. Qian, X. Gu and L. Hang, “A novel ZVS resonant reset dual switch forward DC–DC converter,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 96-103, 2007.
[10] C. M. Wang, “A novel ZCS-PWM flyback converter with a simple ZCS-PWM commutation cell,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 749-757, 2008.
[11] H. Wang, Q. Sun, H. S. Chung, S. Tapuchi and A. Ioinovici, “A ZCS current-fed full-bridge PWM Converter with self-adaptable soft-switching snubber energy,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1977-1991, 2009.
[12] J. F. Chen, R. Y. Chen and T. J. Liang, “Study and implementation of a single-stage current-fed boost PFC converter with ZCS for high voltage applications,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 379-386, 2008.
[13] R. Y. Chen, T. J. Liang, J. F. Chen, R. L. Lin and K. C. Tseng, “Study and implementation of a current-fed full-bridge boost DC–DC converter with zero-current switching for high-voltage applications,” IEEE Trans. Industry Applications, vol. 44, no. 4, pp. 1218-1226, 2008.
[14] F. T. Wakabayashi and C. A. Canesin, “Improvements for ZCS-PWM commutation cell in high-power-factor preregulator application,” IEE Proc. Electr. Power Appl., vol. 153, no. 2, pp. 247-254, 2006.
[15] X. Wu, X. Xie, C. Zhao, Z. Qian and R. Zhao, “Low voltage and current stress ZVZCS full bridge DC–DC Converter using center tapped rectifier reset,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1470-1477, 2008.
[16] G. Ioannidis, E. Xanthoulis and S. N. Manias, “Analysis and design of a novel fixed-frequency buck-boost zero-current zero-voltage switched converter,” IEE Proc. Electr. Power Appl., vol. 145, no. 1, pp. 33-38, 1998.
[17] H. Chung, S.Y. Hui, W.H. Wang, “An isolated ZVS/ZCS flyback converter using the leakage inductance of the coupled inductor,” IEEE Trans. Ind. Electron., vol. 45, no. 4, pp. 679-682, 1998.
[18] X. Ruan and Y. Yan, “A novel zero-voltage and zero-current-switching PWM full-bridge converter using two diodes in series with the lagging leg,” IEEE Trans. Ind. Electron., vol. 48, no. 4, pp. 777-785, 2001.
[19] Y. D. Wei, X. H. Wu, Y. L. Gu and H. Ma, “Wide range dual switch forward-flyback converter with symmetrical RCD clamp,” Proc. IEEE PESC Conf., 2005, pp. 420-424.
[20] Y. L. Gu, X. M. Gu, L. J. Hang, Y. Du, Z. Y. Lu and Z. M. Qian, “RCD reset dual switch forward DC/DC converter,” Proc. IEEE PESC Conf., 2004, vol. 2, pp. 1465-1469.
[21] S. Mappus, “Active clamp transformer reset: high or low side?,” Power electronics technology magazine, 2004, www.powerelectronics.com
[22] B. R. Lin, C. E. Huang, and D. Wang, “Analysis and implementation of a zero-voltage switching forward converter with a synchronous rectifier,” IEE Proc. Electr. Power Appl., vol. 152, no. 5, pp. 1085-1092, 2005.
[23] B. R. Lin, F. Y. Hsieh, D. Wang and K. Huang, “Analysis, design and implementation of active clamp zero voltage switching converter with output ripple current cancellation,” IEE Proc. Electr. Power Appl., vol. 153, no. 5, pp. 653-663, 2006.
[24] B. R. Lin, Y. S. Huang, C. Y. Tung, J. J. Chen and J. J. Shieh, “Active-clamp ZVS converter with step-up voltage conversion ratio,” Proc. IEEE ICIEA, 2009, pp. 2032-2037.
[25] B. R. Lin, J. J. Chen and Y. S. Huang, “Active clamp ZVS converter with output voltage doubler,” IEE Electron. Lett., vol. 44, no. 14, pp. 878-879, 2008.
[26] J. K. Park, W. Y. Choi and B. H. Kwon, “A step-up DC–DC converter with a resonant voltage doubler,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3267-3275, 2007.
[27] J. M. Kwon and B. H. Kwon, “High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 108-115, 2009.
[28] B. R. Lin and C. L. Huang, “Zero voltage switching active clamp buck-boost stage Cuk converter,” IET Power Electronics, vol. 1, no. 2, pp. 173-182, 2007.
[29] B. R. Lin, H. K. Chiang, C. C. Chen, C. S. Lin, and A. Chiang, “Analysis and implementation of soft switching converter with series-connected transformers,” IET Power Electronics, vol. 1, no. 1, pp. 82-92, 2007.
[30] B. R. Lin, C. L. Huang, and M. Y. Li, “Novel zero voltage switching dual-switch forward converter with ripple current cancellation,” IEE Proc. Electr. Power Appl., vol. 1, no. 5, pp. 799-807, 2007.
[31] T. F. Wu, Y. S. Lai, J. C. Hung and Y. M. Chen, “Boost converter with coupled inductors and buck–boost type of active clamp,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 154-162, 2008.
[32] T. F. Wu, J. C. Hung, J. T. Tsai, C. T. Tsai and Y. M. Chen, “An active-clamp push–pull converter for battery sourcing applications,” IEEE Trans. Industry Applications, vol. 44, no. 1, pp. 196-204, 2008.
[33] T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, “An improved boost converter with coupled inductors and buck-boost type of active clamp,” in Conf. Rec. IAS Annu. Meeting, 2005, vol. 1, pp. 639–644.
[34] Y. Zhao, W. H. Li, B. Yang; X. N. He, “Active clamp boost converter with switched capacitor and coupled inductor,” Proc. IEEE APEC, 2010, pp. 801-806.
[35] R. Watson, F. C. Lee and G.C. Hua, “Utilization of an active-clamp circuit to achieve soft switching in flyback converters,” in Conf. Rec. PESC Annu. Meeting, 1994, pp. 909-916.
[36] Y. K. Lo and J. Y. Lin, “Active clamping ZVS flyback converter employing two transformers,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2416-2423, 2007.
[37] B. R. Lin, C. C. Chen, C. L. Huang and C.H. Tseng, “Implementation of a ZVS half-bridge converter with current doubler rectifier,” International Conf. on Communications, Circuits and Systems Proceedings, 2006, vol. 4, pp. 2732-2736.
[38] K. M. Cho, W. S. Oh, K. W. Lee and G.W. Moon, “A new half bridge converter for the personal computer power supply,” Proc. IEEE PESC Conf., 2008, pp. 986-991.
[39] G. Y. Jeong, “High efficiency asymmetrical half-bridge converter using a self-driven synchronous rectifier,” IET Power Electronics, vol. 1, no. 1, pp. 62-71, 2008.
[40] K. B. Park, C. E. Kim, G. W. Moon and M. J. Youn, “A double-ended ZVS half-bridge zeta converter,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2838-2846, 2008.
[41] J. R. Tsai, T. F. Wu, Y. M. Chen and M. C. Lee, “Interleaving control schemes for critical-mode boost PFC,” Proc. IEEE PESC Conf., 2007, pp. 2905-2911.
[42] E. Firmansyah, S. Abe, M. Shoyama, S. Tomioka and T. Ninomiya, “A critical-conduction-mode bridgeless interleaved boost power factor correction: Its control scheme based on commonly available controller,” Proc. IEEE PEDS Conf., 2009, pp. 109-114.
[43] L. Huber, B. T. Irving and M. M. Jovanovic, “Closed-loop control methods for interleaved DCM/CCM boundary boost PFC converters,” Proc. IEEE APEC Conf., 2009, pp. 991-997.
[44] P. Andreassen and T. M. Undeland, “Digital control techniques for current mode control of interleaved ouasi square wave converter,” Proc. IEEE PESC Conf., 2005, pp. 910-914.
[45] Y. C. Hsieh, T. C. Hsueh and H. C. Yen, “An interleaved boost converter with zero-voltage transition,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 973-978, 2009.
[46] B. R. Lin, C. L. Huang and K. L. Shin, “Implementation of a ZVS interleaved converter with two transformers,” IET Power Electronics, vol. 2, no. 5, pp. 614-623, 2009.
[47] B. R. Lin, C. C. Chen, J. F. Wan and C. S. Yang, “Soft switching interleaved forward converter with current doubler rectifier,” Proc. IEEE ICIEA Conf., 2007, pp. 1244-1249.
[48] B. R. Lin, H. K. Chiang and C. Y. Cheng, “Analysis and implementation of an interleaved ZVS bi-flyback converter,” IET Power Electronics, vol. 3, no. 2, pp. 259-268, 2010.
[49] J. B. Zhao, H. L. Zhao and F. Z. Dai, “A novel ZVS PWM interleaved flyback converter,” Proc. IEEE ICIEA Conf., 2007, pp. 337-341.
[50] G. B. Koo, G. W. Moon and M. J. Youn, “Analysis and design of phase shift full bridge converter with series-connected two transformers,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 411-419, 2004.
[51] B. R. Lin, K. Huang, and D. Wang, “Analysis and implementation of full-bridge converter with current doubler rectifier,” IEE Proc. Electr. Power Appl., vol. 152, no. 5, pp. 1193-1202, 2005.
[52] M. Miller and A. Buffin, “A versatile 48 V/60 V 100 A rectifier for all mains inputs,” Proc. IEEE INTELEC Conf., 1995, pp. 466-470.
[53] W. Chen, X. B. Ruan and R. R. Zhang, “Zero-voltage-switching PWM three-level converter with interleaved complementary modulation,” Proc. APEC Conf., 2007, pp. 949-954.
[54] X. Ruan, Z. Chen and W. Chen, “Zero-voltage-switching PWM hybrid full-bridge three-level converter,” IEEE Trans. Power Electron., vol. 20, no. 2, pp. 395-404, 2005.
[55] H. Sugimura, S. P. Mun, S. K. Kwon, T. Doi, K. Morimoto and M. Nakaoka, “Three-level phase shifted ZVS-PWM DC-DC converter with neutral point diodes clamping and flying capacitor,” Proc. IEEE ISIE Conf., 2009, pp. 1071-1076.
[56] X. Ruan, B. Li, J. Wang and J. Li, “Zero-voltage-switching PWM three-level converter with current-doubler-rectifier,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 2523-1532, 2004.
[57] F. Canales, P. Barbosa and F.C. Lee, “A zero-voltage and zero-current switching three-level DC/DC converter,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 898-904, 2002.
[58] J. P. Rodrigues, I. Barbi and A. J. Perin, “Buck converter with ZVS three level buck clamping,” Proc. IEEE PESC Conf., 2008, pp. 2184-2190.
[59] A. I. Pressman, Switching Power Supply Design, McGraw-Hill, Inc., 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top