跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/15 19:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王德純
研究生(外文):Te-Chun Wang
論文名稱:氧化鋁/鎳及氧化鋁/氧化鋯/鎳複合材氧化行為之研究
論文名稱(外文):The Oxidation Behaviors of Al2O3/Ni and Al2O3/(ZrO2+Ni) Composites
指導教授:段維新段維新引用關係
指導教授(外文):Wei-Hsing Tuan
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:138
中文關鍵詞:氧化氧化鋁氧化鋯複合材擴散
外文關鍵詞:oxidationaluminanickelzirconiacompositediffusionpercolation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:480
  • 評分評分:
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:1
本研究探討Al2O3/Ni及Al2O3/(ZrO2+Ni)複合材的氧化行為,而這些複合材是在CO氣氛下,以無壓燒結方式製備。在Al2O3/Ni 複合材氧化過程中,鎳不斷的向外擴散累積,形成一連續且緻密的氧化層。其氧化機制包含:(1) 低溫 (1000-1100oC)時,鎳在氧化鋁基地中擴散的擴散控制機構,(2)高溫(1100-1300oC)時,氧在NiAl2O4中擴散的擴散控制機構。低溫時,氧化活化能為267±32 kJ/mole;高溫時,氧化活化能為578±24 kJ/mole。添加氧化鋯於複合材中會增加其氧化速率。在Al2O3/(ZrO2+Ni)複合材中,當氧化鋯含量低於10vol.%以下時,低溫為鎳在氧化鋁基地中擴散的擴散控制機構,高溫為氧在NiAl2O4中擴散的擴散控制機構。當氧化鋯添加量超過10vol.%以上時,複合材的氧化過程傾向為反應控制機構。此現象可用Percolation Theory來解釋。在Al2O3/(ZrO2+Ni)複合材中的氧化活化能會隨著氧化鋯添加量的增加而降低,而氧化鋯中是否含有Y2O3,對於氧化速率的增加亦有影響。

In the present study, the oxidation behavior of Al2O3/Ni and Al2O3/(ZrO2+Ni) composites are investigated. The composites are prepared by pressureless sintering in CO. For the oxidation of Al2O3/Ni composites, nickel diffuses outward and oxygen diffuses inward, a dense spinel layer is formed inside surface. The oxidation is divided into two stages: (1) the diffusion of nickel in the alumina grain boundary to control the oxidation at lower temperature (1000-1100oC). (2) The diffusion of oxygen in NiAl2O4 layer to control the oxidation at higher temperature (1100-1300oC). The activation energy of oxidation at lower temperature is 267±32 kJ/mole, at higher temperature 578±24 kJ/mole. For Al2O3/(ZrO2+Ni) composites, the present of zirconia enhances the oxidation rate of the composites. When the zirconia content is lower than 10vol.%, nickel diffusion tends to control oxidation at lower temperature and oxygen diffusion to control oxidation at higher temperature. When the zirconia content is higher than 10vol.%, the oxidation may be controlled by the reaction control mechanism. The critical zirconia content forms the percolation threshold. The stabilizer, such as Y2O3, in the tetragonal phase zirconia raises the amount of oxygen vacancies and increases the oxygen diffusion rate in zirconia.

Chapter 1 Introduction........................................1
Chapter 2 Literature Survey...................................3
2-1 The characteristics of Al2O3, ZrO2, and Ni................3
2-2 Oxidation.................................................3
2-2-1 Reactions of oxidation..................................3
2-2-2 Oxidation mechanism.....................................5
2-2-3 Oxidation of Al2O3/Ni composites........................6
2-2-3-1 Oxidation of nickel...................................7
2-2-3-2 Formation of NiAl2O4 spinel phase.....................8
2-2-4 Effect of ZrO2 on oxidation behavior....................9
Chapter 3 Experimental Procedures............................15
3-1 Preparation of Al2O3/Ni, Al2O3/(t-ZrO2+Ni), and Al2O3/(m-ZrO2+Ni) composites..........................................15
3-1-1 Starting materials.....................................15
3-1-2 Preparation of specimens...............................15
3-1-3 Phase identification...................................16
3-1-4 Density measurement....................................16
3-2 The oxidation behaviors of Al2O3/Ni、Al2O3/(tZrO2+Ni)、and Al2O3/(mZrO2+Ni).............................................22
3-2-1 The preparation of oxidation specimens.................22
3-2-2 Measurement of electrical resistivity..................22
3-2-3 Oxidation..............................................22
3-2-4 Analysis of the oxidation rate.........................23
3-2-5 X-ray diffraction analysis.............................23
3-2-6 SEM observation........................................23
3-2-6-1 Observation of oxidation surface.....................23
3-2-6-2 Observation of oxidation layer.......................23
Chapter 4 Results and Discussion.............................25
4-1 The characteristics of Al2O3/Ni, Al2O3/(t-ZrO2+Ni), and Al2O3/(m-ZrO2+Ni) composites.................................25
4-1-1 Thermodynamic analysis.................................25
4-1-2 The properties of the composites.......................26
4-1-3 Connectivity of Ni inclusions..........................27
4-2 Oxidation................................................27
4-2-1 The oxidation of Al2O3/Ni composites...................27
4-2-1-1 X-ray diffraction analyses...........................27
4-2-1-2 The oxidation behavior analysis......................30
4-2-1-2-1 Oxidation rate.....................................30
4-2-1-2-2 Microstructure observation.........................35
4-2-1-3 Oxidation mechanism..................................43
4-2-1-4 Activation energy of oxidation.......................46
4-2-2 Oxidation of Al2O3/(t-ZrO2+Ni) composites..............56
4-2-2-1 X-ray diffraction analysis...........................56
4-2-2-2 Oxidation behavior analyses..........................56
4-2-2-2-1 Oxidation rate.....................................56
4-2-2-2-2 Microstructure observation.........................56
4-2-2-3 Oxidation mechanism..................................66
4-2-2-4 Activation energy of oxidation.......................69
4-2-3 The oxidation of Al2O3/(m-ZrO2+Ni) composites..........75
4-2-3-1 X-ray diffraction analyses...........................75
4-2-3-2 Oxidation behavior analyses..........................75
4-2-3-2-1 Oxidation rate.....................................75
4-2-3-2-2 Microstructure observation.........................75
4-3 General discussion.......................................80
4-3-1 The oxidation of Al2O3/Ni and of Al2O3/(t-ZrO2+Ni) composites...................................................80
4-3-2 The oxidation of Al2O3/(t-ZrO2+Ni) and of Al2O3/(m-ZrO2+Ni) composites..........................................83
Chapter 5 Conclusions........................................85
References...................................................87
APPEXDIX....................................................A-1

[1]D. J. Green, R. H. Hannink, and M. V. Swain, “Transformation Toughening of Ceramics.” CRC Press. Inc. (1989)
[2] M. Marten, and E. Fromm, “Low-temperature oxidation of metal surfaces.“ J. Alloys Comp. 258, 7 (1997).
[3] B. E. Deal and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon.” J. Appl. Phys., 36, 12 (1965).
[4] K. P. Trumble, and M. Rühle, “The Thermodynamics of Spinel Interphase Formation at Diffusion-Bonded Ni/Al2O3 Interface.” Acta Metall. Mater., 39, 8, 1915 (1991).
[5] R. Karmhag, T. Tesfamichael, E. Wäckelgård, G. A. Niklasson and M. Nygren, “Oxidation kinetics of Nickel Praticles: Comparison between Free Particles and Particles in an Oxide Matrix.” Solar Energy, 68, 4, 329 (2000)
[6] N. N. Khoi, W. W. Smeltzer and J.D. embury, “Growth ans Structure of Nickel Oxide on Nickel Crystal Faces.” J. Electrochem. Soc., 122, 11, 1495 (1975)
[7] Frederick N. Rhines and Richard G. Connell, Jr., “Role of Grain Growth in the Oxidation on Nickel.” J. Electrochem. Soc., 124, 7, 1122 (1977)
[8] F. N. Rhines and J. S. Wolf, “The Role of Oxide Microstructure and Growth Sresses in the High-Temperature Scaling of Nickel.” Metall. Trans., 1, 6, 1701 (1970)
[9] D. Caplan, M. J. Graham, and M. Cohen, “Effect of Cold Work on the Oxidation of Nickel at High Temperature.” J. Electrochem. Soc., 119, 9, 1205 (1972).
[10] J. M. Perrow, W. W. Smeltzer, and J. D. Embury, “The Role of Structural Defects in the Growth of Nickel Oxide Films.” Acta Metall. 16, 10, 1209 (1968).
[11] R. Karmhag and G. A. Niklasson, “Oxidation Kinetics of Large Nickel Particles.” J. Mater. Res., 14, 7, 3051 (1999).
[12] C. Lee and L. D. Schmidt, “Microstructures in Oxidation and Reduction of Small Ni Particles: Bubbles and Clusters.” J. Electrochem. Soc., 136, 9, 2471 (1989).
[13] Jong-Wan Park, and Carl J. Altstetter, “The Diffusion and Solubility of Oxygen in Solid Nickel.” Metall. Trans. A, 18A, 1, 43 (1987)
[14] F. S. Pettit, E. H. Randklev, and E. J. Eelten, “Formation of NiAl2O4 by Solid State Reaction.” J. Am. Ceram. Soc., 49, 4, 199 (1966).
[15]K. Hirota and W. Komatsu, “Concurrent Measurement of Volume, Grain Boundary and Surface Diffusion Coefficients in the System NiO-Al2O3.” J. Am. Ceram. Soc., 60, 3-4, 105 (1977).
[16] W. H. Tuan, M. C. Lin, and H. H. Wu, “Preparation of Al2O3/Ni Composites by Pressureless Sintering in H2.” Ceram. International, 21, 221 (1995).
[17] R. C. Rossi, and R. M. Fulrath, “Epitaxial Growth of Spinel by Reaction in the Solid State.” J. Am. Ceram. Soc., 46, 3, 145 (1963).
[18] P. G. Kotula, and C. B. Carter, “Nucleation of Solid-State Reactions between Nickel Oxide and Aluminum Oxide.” J. Am. Ceram. Soc., 78, 1, 248 (1995).
[19] F. A. Elrefaie, and W. W. Smeltzer, “Phase Equilibria in the Subsolidus Region of the NiO-αAl2O3 System Between 1000 and 1920 oC.” Oxid. Met., 15, 5-6, 495, (1981).
[20] Xudong Sun and Julie Yeomans, “Optimization of a Ductile-Particle-Toughened Ceramic.” J. Am. Ceram. Soc., 79, 10, 1705 (1996).
[21] R. L. Mehan, “Stability of Single Crystal Sapphire in Nickel and Nickel-Alloy Matrices.” Metall. Trans., 3, 4, 897 (1972)
[22] W. J. Minford, and V. S. Stubican, “ Interdiffusion and Association Phenomena in the System NiO-Al2O3.” J. Am. Ceram. Soc.,57, 8, 363 (1974).
[23] Y. Kouh Simpson, E. G. Colgan, and C. B. Carter, “ Kinetics of the Growth of Spinel on Alumina Using Rutherford Backscattering Spectroscopy.” J. Am. Ceram. Soc., 70, 7, C-149 (1987).
[24] M. Y. Liu, K. L. Weisskopf, M. J. Hoffmann, and G. Petzow, “Oxidation Behavior of SiC Whisker Reinforced Mullite (-ZrO2) Composites.” J. Europe. Ceram. Soc., 5, 123 (1989).
[25] C. Y. Tsai, and C. C. Lin, “Effect of Zirconia on the Oxidation Behavior of Silicon Carbide/Zirconia/Mullite Composites.” J. Am. Ceram. Soc., 81, 9, 2413 (1998).
[26] 劉鸞嬰,碩士論文,國立交通大學材料與工程學研究所 (2000)。
[27] K. P. Trumble, and M. Rühle, “The Thermodynamics of Spinel Interphase Formation at Diffusion-Bonded Ni/Al2O3 Interface.” Acta Metall. Mater., 39, 8, 1915 (1991).
[28] 吳欣賢,碩士論文,國立台灣大學材料科學與工程學研究所 (1994)。
[29] L. Smialek and R. Gibala, “Diffusion Processes in Al2O3 Scales: Void Growth, Grain Growth and Scale Growth in High Temperature Corrosion.” pp. 274-83 in NACE-6. Edited by R. A. Rapp. National Association of Corrosion Engineers, Houston, TX, 1983.
[30] J. L. Smialek and R. Gibala, NASA Technical Memorandum 79259 (1979).
[31] Y. Kouh Simpson, S. McKernan and C. B. Carter, from the 89th Annual Meeting Ceramographic exhibit.
[32] M. Pomeroy and S. Hampshire, “Oxidation Processes in Silicon Nitride based ceramics.” Mater. Sci. Eng., A109, 389 (1989).
[33] A. Aktinson and R. I. Taylor, Phil. Mag. A, 39, 581 (1979)
[34] A. Aktinson and R. I. Taylor, Phil. Mag. A, 43, 979 (1981).
[35] D. M. Duffy and P. W. Tasker, J. Physique C4, 46, 185 (1984)
[36] D. L. Johnson and I. B. Cutler, J. Am. Ceram. Soc., 46, 545 (1963).
[37] R. M. Cannon, W. H. Rhodes and A. H. Heuer, J. Am. Ceram. Soc., 63, 46 (1980).
[38] R. L. Mehan. “Stability of Single Crystal Sapphire in Nickel and Nickel-Alloy Matrices.” Metall. Trans., 3, 4, 898 (1971)
[39] G. B. Abderrazik, F. Millot, G. Moulin, and A. M. Huntz, “Determination of Transport properties of Alumina Oxide Scale.” J. Am. Ceram. Soc., 68, 6, 307 (1985).
[40] V. K. S. Shante, and S. Kirkpatric, “An Introduction to Percolation Theory.” Adv. Phys. 20, 85, 325 (1971).
[41]P. Aldebert and J. P. Traverse, “Structure and Ionic Mobility of Zirconia at High Temperature.” J. Am. Ceram. Soc., 68, 1, 34 (1985).
[42] K. L. Luthra, and H. D. Park, “Oxidation of Silicon Carbide-Reinforced Oxide-Matrix Composites at 1375 to 1575oC.” J. Am. Ceram. Soc., 73, 4, 1014 (1990).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊