跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游馥榕
研究生(外文):Fu-jung Yu
論文名稱:台灣溫泉菌ThermosynechococcuselongatesTA01菌種鑑定與生理生化之研究
論文名稱(外文):Studies on Species identification, Physiology and Biochemistry of Thermosynechococcus elongatus TA01 in hot spring of Taiwan
指導教授:呂誌翼
指導教授(外文):Jyh-yih Leu
學位類別:碩士
校院名稱:輔仁大學
系所名稱:生命科學系碩士班
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:91
中文關鍵詞:高溫藍菌生長環境藻藍素熱穩定性蛋白
外文關鍵詞:Thermosynechococcus elongatusenvironmentphycocyaninheat-stable protein
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
藍菌是一大量且分布廣泛的光合自營微生物,生存環境遍及海陸和極端環境,像是寒冷南極的湖或是溫泉,而可生存在上述環境的微生物又可稱為極端微生物。極端微生物當中的嗜熱性微生物為了生存於高溫的環境,常會發展出特異的生理特性與細胞結構,以應付極端環境,如耐熱的細胞膜、DNA修補系統、具熱穩定性的酵素系統等,在溫泉、海底熱泉、火山硫氣孔,都可以發現此微生物的生長。因具有與真核生物相當類似之光合作用系統的photosystem Ⅰ和photosystem Ⅱ,實驗借由改變生長環境條件,例如溫度、光照、酸鹼度、鹽類、氮源等變化促進生長以及影響色素蛋白的含量。
在台灣地區具有陸生及海水溫泉等多樣化的地熱溫泉,針對台灣溫泉進行嗜熱性微生物之研究,本研究所使用的菌株為實驗室前人於台灣苗栗泰安溫泉採樣取得之高溫藍菌標記為TA01,適合生長溫度在40~60℃,探討其鑑定、生理和生化以及色素蛋白的分析。實驗結果發現與嗜熱性藍菌Thermosynechococcus elongatus BP-1之16S rRNA相似度為99%,高溫藍菌TA01菌株呈現桿狀、為格蘭氏陽性細菌;強光照環境下(光照6000lux)高溫藍菌TA01生長快速但也很快達到生長巔峰;生長酸鹼值範圍為pH 5-10,最利其生長酸鹼值為 pH9;耐鹽度最高可達50mM NaCl,在1M NaCl培養下則無生長現象;以利用NaNO3作為生長氮源生長狀況最良好;螢光光譜分析高溫藍菌的藻藍蛋白,以580nm為最適合的激發光源,並可以觀測到在654nm有一高峰,即顯示高溫藍藻有大量的phycocyanin存在。初步推測本研究的高溫藍菌TA01可能成為Thermosynechococcus 菌屬中的新菌株。
未來可以針對其單一碳源的利用,進而研究固碳的效應;粗蛋白、粗脂肪分析,初步了解其組成分;藻藍素蛋白的純化,可應用在醫藥生技研發。
Cyanobacteria are large and diverse group of obligate photoautotrophs which inhabit most of Earth’s environments, even though there is a lake in the South Pole or a hot spring. The bacteria which live in extreme environments are called extremophiles, one of them are thermophiles. In order to exist in hot air environment, extremophiles develop distinctive physiological character and cell structure such as heat-resistant cell membrane, DNA repair system, heat-stable enzyme system, etc. They inhabit various hot springs, hydrothermal vents and continental solfataras. The photosynthetic apparatus of cyanobacteria is practically the same as those of higher plants, including both photosystem Ⅰ and photosystem Ⅱ. Various parameters influence generation time and protein content in different ways, a few selected parameters are presented such as temperature, light intensity, pH, salinity, nutrient availability, etc.
There are many hot springs which include variable microorganisms in Taiwan. The study is aimed to resaerch the thermophile called TA01 which is isolated from the sample of hot spring on Miaoli country and growth occurs between 40~60℃ by forefathers in our laboratory. and to analyze its species identification, physiology and biochemistry.
According to the result of 16S rDNA sequence analysis, the strain shows 99% sequence similarity to Thermosynechococcus elongatus BP-1. The strain is a short gram-positive rod. The strain grows fast in high light intensity. The pH range for growth is 5-10, with an optimal at pH9. Growth occurs in BGⅡ medium which is contained 50mM NaCl but doesn’t occur in the presence of 1M NaCl. It utilizes NaNO3 for growing. Aanlysis of thermophile cyanobacteria of phycocyanin by photoluminescence,it has an optimal fluorescence excitation at 580 nm with emission at 654 nm. The result shows there is a lots of phycocyanin in this strain.
As a result, the strain TA01 might be a novel strain in the genus of Thermosynechococcus.
it can also be studied on utilizing carbon source to find more efficient ways of carbon fixation, analyzing crude protein and crude fat to realize its preliminary composition and purifying the protein of phycocyanin to apply to bio-research for biopharmaceutical research and development in the future.
中文摘要…………………………………………………………………i
英文摘要…………………………………………………………………ii
縮寫對照表………………………………………………………………iv
圖目錄……………………………………………………………………v
表目錄…………………………………………………………………vii
培養基…………………………………………………………………viii


第一章 緒言…………………………………………………………1
一、研究動機……………………………………………………………1
二、研究目的……………………………………………………………2

第二章 文獻回顧……………………………………………………3
一、嗜熱性微生物(thermophiles)…………………………………………4
二、藍菌(cyanobacteria)…………………………………………………5
三、光合作用的光捕捉器-藻膽體(phycobilisome,簡稱PBS)…………………7
(1)藻藍素(phycocyanin,PC)…………………………………………8
(2)藻紅素(phycoerythrin,PE)…………………………………………8
(3)異藻藍素(allophycocyanin,APC)…………………………………9
四、影響藍菌生長的條件…………………………………………………9
(1)溫度………………………………………………………………9
(2)酸鹼度(pH值)……………………………………………………10
(3)氧氣……………………………………………………………11
(4)氮源……………………………………………………………11
(5)光照強度…………………………………………………………12
(6)鹽濃度…………………………………………………………12
五、光激螢光光譜分析藻藍素……………………………………………13

第三章 材料與方法…………………………………………………14
一、實驗架構……………………………………………………………14
二、實驗材料……………………………………………………………14
1 菌種…………………………………………………………………14
2 藍菌菌株來源-泰安溫泉………………………………………………14
3 試劑…………………………………………………………………15
4 儀器設備……………………………………………………………18
三、實驗方法……………………………………………………………20
1 高溫藍菌TA01保存…………………………………………………20
2 高溫藍菌TA01菌量分析……………………………………………20
3 高溫藍菌TA01菌種遺傳分析…………………………………………20
3.1高溫藍菌TA01染色體DNA之萃取………………………………20
3.2 16S rDNA序列分析和cpc-IGS序列分析……………………………23
3.3 高溫藍菌TA01型態分析…………………………………………24
3.3.1 菌株型態觀察…………………………………………………24
3.3.2 格蘭氏染色……………………………………………………24
3.3.3 螢光顯微攝影…………………………………………………25
3.3.4 掃描式電子顯微攝影…………………………………………25
3.3.5 移動性測驗……………………………………………………26
4 高溫藍菌TA01生理生化特性分析……………………………………26
4.1 光照生長範圍測試………………………………………………27
4.2 初始生長環境酸鹼度範圍測試……………………………………27
4.3 耐鹽度測試………………………………………………………27
4.4 氮源生長範圍測試……………………………………………28
4.4.1 單一氮源對高溫藍菌TA01生長的影響………………………28
4.4.2 不同硝基氮源對高溫藍菌TA01生長的影響……………………28
4.5 氧化酶(oxidase)活性測試………………………………………29
4.6 觸酶(catalase)活性測試………………………………………29
5 儀器分析……………………………………………………………29

第四章 結果…………………………………………………………30
1高溫藍菌TA01菌量分析………………………………………………30
2高溫藍菌TA01菌種遺傳分析…………………………………………30
2.1 16S rDNA序列分析………………………………………………30
2.2 cpc-IGS序列分析…………………………………………………30
2.3 高溫藍菌TA01型態分析…………………………………………31
2.3.1 菌株型態觀察…………………………………………………31
2.3.2 格蘭氏染色……………………………………………………31
2.3.3 螢光顯微攝影…………………………………………………31
2.3.4 掃描式電子顯微攝影…………………………………………31
2.3.5 移動性測驗……………………………………………………31
3 高溫藍菌TA01生理生化特性分析……………………………………32
3.1 光照生長範圍測試………………………………………………32
3.2 酸鹼度生長範圍測試……………………………………………32
3.3 耐鹽度測試………………………………………………………33
3.4 氮源生長範圍測試………………………………………………34
3.4.1 單一氮源對高溫藍菌TA01生長的影響…………………………34
3.4.2 不同硝基氮源對高溫藍菌TA01生長的影響……………………34
3.5 氧化酶(oxidase)活性測試………………………………………35
3.6 觸酶(catalase)活性測試…………………………………………35
4 儀器分析……………………………………………………………35

第五章 討論…………………………………………………………37

參考文獻………………………………………………………………41

圖表……………………………………………………………………51

附錄……………………………………………………………………81
Abd Rahman RN, Leow TC, Salleh AB and Basri M. (2007). Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia. BMC Microbiology. 7: 77

Adir N, Dobrovetsky Y, Lerner N. (2001). Structure of c-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 A: structural implications for thermal stability in phycobilisome assembly. Journal of Molecular Biology. 313(1): 71-81

Akkerman I, Janssen M, Rocha JMS, Reith JH and Wijffels RH. (2003). Photobiological hydrogen production: photochemical efficiency and bioreactor design, in bio-methane and bio-hydrogen, J. H. Reith, R. H. Wijffels and H. Barten, ed. (Dutch Biological Hydrogen Fundation). 124-145

Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M and Murata N. (2000). Ionic and osmotic effects of NaCl-Induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiology. 123: 1047–1056

Anderson JM and Ander sson B. (1988). The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends in Biochemical Sciences. 13: 352-355

Babu TS, Kumar A and Varma AK. (1991). Effect of light quality on phycobilisome components of the cyanobacterium Spirulina platensis. Plant Physiology. 95(2): 492-497

Badger MR and Price GD. (2003). Dean price CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany. 54(383): 609-22

Bailey S and Grossman A. (2008). Photoprotection in cyanobacteria: regulation of light harvesting. Photochemistry and Photobiology. 84: 1410–1420

Barber J, Morris EP and da Fonseca PCA. (2003). Interaction of the allophycocyanin core complex with photosystem II. Photochemical and Photobiological Sciences. 2: 536–541

Bhat VB and Madyastha KM. (2000). C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochemical and Biophysical research Communications. 275: 20-5

Binder BJ and Chisholm SW. (1990). Relationship between DNA cycle and growth rate in Synechococcus sp. Strain 6301. Journal of Bacteriology. 172: 2313-2319

Binnig G, Quate CF and Gerber C. (1986). Atomic force microscope. Physical Review Letters. 56(9):930-933

Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW and Kelly RM. (2008). Extremely thermophilic microorganisms for biomass conversion: status and prospects. Current Opinion in Biotechnology. 19(3): 210-217

Brock TD. (1967). Life at high temperatures. Science (Washington). 158: 1012

Brock TD and Freeze H. (1969). Thermus aquaticus, a nonsporulating extreme thermophile. Journal of Bacteriology. 98(1):.289-297

Brock DT. (1973). Lower pH limit for the existence of blue-green algae. Evolutionary and ecological implication. Science. 179: 480-483

Brock, T. D. (1978). Thermophilic Microorganisms and Life at High Temperatures. New York: Springer-Verlag

Brock TD, Smith DW and Madigan MT. (1994). Biology of microorganisms. New Jersey: Prentice-Hill, Inc., Englewood Cliffs. 644-650

Castenholtz RW. (1969) Thermophilic blue-green algae and the thermal environment. Bacteriological Review. 33: 476-504

Castenholtz RW. (1992). Species usage, concept, and evolution in the cyanobacteria (blue-green algae). Journal of Phycology. 28: 737-745

Castenholz RW and Waterbury JB. (1989). Group I. Cyanobacteria. Preface. In J.T. Staley, M.P. Bryant, N. Pfenning, and J.G. Holt , ed, Bergey's Manual of Systematic Bacteriology, vol. 3. Williams & Wilkins, Baltimore, pp. 1710-1727

Cavicchioli R. (2002). Extremophiles and the search for extraterrestrial life. Astrobiology. 2(3): 281-292

Chien A, Edgar DB, Trela JM. (1976). Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. Journal of Bacteriology. 127(3):1550-7

Eriksen NT. (2008). Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology. 80:1–14

Fay P. (1992). Oxygen relations of nitrogen fixation in cyanobacteria. Microbiological Reviews. 56(2): 340–373

Feng D and Yang S. (2008). Current status on proteomics of extremophilic microorganisms—a review. Wei Sheng Wu Xue Bao. 48(12):1675-80

Gantt E. (1994). Supramolecular membrane organization. In: the molecular biology of cyanobacteria. Bryant DA, ed. Kluwer Academic Published. 119-138

Gaudy AF. (1980). Microbiology for Environmental Scientists and Engineers. McGraw-Hill. 351 Inc., New York

Glazer AN, Hatch MD and Boardman HK. (1981). Photosynthetic accessory protein with billin prothetic group. The Biochemistry of Plants vol. 8, Photosynthesis, Academic Press, New York

Grobbelaar N, Lin HT and Huang TC. (1987). Induction of a nitrogenase activity rhythm in Synechococcus RF-1 and the protection of its nitrogenase against photosynthetic oxygen. Current Microbiology. 15: 29-33

Grossman AR, Schaefer MR, Chiang GG and Collier JL. (1993). The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiological Reviews. 725-749

Hagemann M and Erdmann M. (1997). Environmental stresses. In: Cyanobacterial Nitrogen Metabolism and Environmental Biotechnoligy. 156-221

Hershkovitz N, Oren A and Cohen Y. (1991). Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Applied and Environmental Microbiology. 57(3): 645–648

Inoue N, Emi T, Yamane Y, Kashino Y, Koike H and Satoh K. (2000). Effects of high-temperature treatments on a thermophilic cyanobacterium Synechococcus vulcanus. Plant and Cell Physiology. 41(4):515-22

Iwai M, Katoh H, Katayama M and Ikeuchi M. (2004). Improved genetic transformation of the thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1. Plant Cell Physiol. 45(2): 171–175

Katoh H, Itoh S, Shen J-R, and Ikeuchi M. (2001). Functional analysis of psbV and a novel c-type cytochrome gene psbV2 of the thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Plant and Cell Physiology. 42: 599-607

Kaplan S, Arntzen CJ and Govindjee, A. (1982). Photosynthetic Structure and function. Photosynthesis, vol. 1, Academic Press, New York

Kristjansson JK and Stetter KO. (1992). Thermophilic Bac-teria. In: Thermophilic Bacteria (Jakob K. Kristjansson, ed). Boca Raton: CRC Press. 1 - 18

Lebedinsky AV, Chernyh NA, Bonch-Osmolovskaya EA. (2007). Phylogenetic systematics of microorganisms inhabiting thermal environments. Biochemistry (Moscow). 72(12): 1299-1312

Lehninger AL, Nelson DL and Cox MM. (1993). Principles of biochemistry. N.Y. Worth Publishers. 571-591

Luo YH and Mitsui A. (1994). Hydrogen production from organic substrates in an aerobic nitrogen-fixing marine unicellular cyanobacterium Synechococcus sp. strain Miami BG 043511. Biotechnology and Bioengineering. 44(10): 1255-60

Michael TM, John MM and Jack P. (2000). Brock Biology of 111 Microorganisms. 9th ed. Prentice-Hall Inc., New Jersey. 524~529

Morelhão SL. (2003). An X-ray diffractometer for accurate structural invariant phase determination. Journal of Synchrotron Radiation. 10(Pt 3):236-41

Mullineaux CW. (2008). Phycobilisome-reaction centre interaction in cyanobacteria. Photosynthesis Research. 95: 175–182

Murata N and Wada H. (1995). Acyl-lipid desaturases and therir importance in the tolerance and acclimatization to cold of cyanobacteria. Biochemical Journal. 308: 1-8

Nagy M, Akoev V, and Zolkiewski M. (2006). Domain stability in the AAA+ ATPase ClpB from Escherichia coli. Archives of Biochemistry and Biophysics. 453(1): 63–69

Narberhaus F. (2002). α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiology and Molecular Biology Reviews. 66: 64–93.

Neilan BA, Jacobs D and Goodman AE. (1995). Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Applied and Environmental Microbiology. 61(11):3875-83

Nishida I and Murata N. (1996). Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annual review of Plant Physiology. 47: 541-568

Olsen G. J, Woese CR and Overbeek R. (1994). The winds of (evolutionary) change: Breathing new life into microbiology. Journal of Bacteriology. 176: 1~6

Ö quist G, Campbell D, Clarke A and Custafsson P. (1995). The cyanobacterium Synechococcus modulates photosystem II fuction in response to excitation stress through D1 exchange. Photosynthesis Research. 46: 151-158

Onai K, Morishita AM, Kaneko AT, Tabata S, Ishiura AM. (2004). Natural transformation of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1: a simple and efficient method for gene transfer. Mol Gen Genomics. 271: 50–59

Reddy CM, Subhashini J, Mahipal SVK, Bhat VB, Reddy PS, Kiranmai G, Madyastha KM and P Reddanna. (2003). Cphycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 2647 macrophages. Biochemical and Biophysical Research Communications. 304: 385-92

Remirez D, Fernandez V, Tapia G, Gonzalez R and Videla LA. (2002). Influence of C-phycocyanin on hepatocellular parameters related to liver oxidative stress and kupffer cell functioning. Inflammation Research 51: 351-6

Richaud C, Zabulon G, Joder A and Thomas JC. (2001). Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. Journal of Bacteriology. 183(10):2989-94

Robertson BR, Tezuka N and Watanabe MM. (2001). Phylogenetic analyses of Synechococcus strains(cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. International Journal of Systematic and Eevolutionary Microbiology. 51: 861–871

Romay C, Gonzalex R, Ledon N, Remirez D, Rimbau V. (2003). Current protein and peptide. Science. 4:207-16

Rothschild LJ and Mancinelli RL. (2001). Life in extreme environments. Nature. 409: 1092-1101

Sanders-Loehr J. (1988). Involvement of oxo-bridged binuclear iron centers in oxygen transport, oxygen reduction, and oxygenation. Progress in Clinical and Biological Research. 274:193-209

Sauer Jo¨ rg, Schreiber U, Schmid R, lker U Vo¨ and Forchhammer K. (2001). Nitrogen starvation-induced chlorosis in Synechococcus PCC 7942. Low-level photosynthesis as a mechanism of long-term survival. Plant Physiology. 126: 233–243

Shukla HD. (2006). Proteomic analysis of acidic chaperones, and stress proteins in extreme halophile Halobacterium NRC-1: A comparative proteomic approach to study heat shock response. Proteome science. 4:6-17

Six C, Thomas J-C, Garczarek L, Ostrowski M, Dufresne A, Blot N, Scanlan DJ and Partensky F. (2007). Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biology. 8: R259

Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. (2002). Hydrogenases and hydrogen metabolism of cyanobacteria microbiology and molecular. Biology Reviews. 66(1): 1-20, Vol. 66, No. 1

Tandeau de M, Houmard N and Houmard J. (1993). Adaptation of cyanobacteria to e 80 environmental stimuli: new steps towards molecular mechanisms. Microbiological Reviews. 104: 119-190

Thomas DB and Mercedes RE. (1969). Fine Structure of Thermus aquaticus, an Extreme Thermophile. Journal of Bacteriology. 104(1): 509–517

van den Burg B. (2003). Extremophiles as a source for novel enzymes. Current Opinion in Microbiology. 6(3): 213-218

van Lier JB, Rebac S and Lettinga G. (1997). High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions. Water Science Technology. 35(10): 199-206

Whitton BA and Potts M. (2000). Introduction to the cyanobacteria. In: The ecology of cyanobacteria- Their diversity in time and space, edited by B. A. Whitton and M. Potts. 1-11. Kluwer Academic Publishers

Wolk CP. (1973). Physiology and cytological; chemistry of Blue Green algae. Microbiological Reviews. 37(1): 32-110

Zhang G and Weeks BL. (2008). Inducing dendrite formation using an atomic force microscope tip. Scanning. 30(3):228-31

Zhang XK, Haskell JB, Tabita FR and Van Baalen C. (1983). Aerobic hydrogen production by the heterocystous cyanobacteria Anabaena spp. strains CA and 1F. Journal of Bacteriology. 156(3): 1118-22

范欣惠(2006)藍綠菌最佳產氫生理條件及其反應器操作之研究。國立中興大學環境工程研究所碩士論文。

林泰宏(2005)綠藻FJ03對無機碳資源化利用之研究。天主教輔仁大學生命科學研究所碩士論文。

郭長生(1976)藍綠菌,生物科學,9: 35。

謝嘉民、賴一凡、林永昌、枋志堯(2005),奈米通訊,財團法人國家實驗研究院 奈米元件實驗室出版委員會,第12卷第2期。

沈萍(2003)微生物學,初版,五南出版機構出版,95~100;178~183。

詹哲豪、林绣茹、顏瑞鴻、池華瑋(2000),簡明微生物學,第五版,華杏出版機構出版,41-72。

張雅晴(2008)高溫藍菌Thermosynechococcus elongatus TA01藻藍素的萃取純化。天主教輔仁大學物理學系專題研究。

陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠,精密儀器發展中心著作(2004),材料電子顯微鏡學,全華科技出版。

沈文臺(2008)單一高溫藍綠藻菌與紅血球在光鉗操控下的拉曼光譜偵測。天主教輔仁大學物理學系研究所碩士論文。

徐慧君(2006)海洋聚球藻藻藍素的免疫抗癌及抗氧化活性。國立臺灣大學海洋所碩士論文。

吳季芳(2006)以澱粉為碳源基質進行生物產氫。國立成功大學化學工程所碩士論文。

台灣溫泉探勘服務網http://www.twem.idv.tw。

維基百科, http://en.wikipedia.org。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top