跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/12/23 05:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪燕玲
研究生(外文):Yan-ling Hong
論文名稱:規則氧化鋁模板及鎳金屬奈米線陣列製備之研究
論文名稱(外文):Fabrication of ordered AAO template and Ni nanowire arrays
指導教授:鄭紹良
指導教授(外文):Shao-Liang Cheng
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:75
中文關鍵詞:鎳金屬奈米線陣列氧化鋁模板
外文關鍵詞:Ni nanowire arraysAAO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:531
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著先進元件的關鍵尺寸逐漸縮小至奈米尺度,一維金屬奈米線由於其在各式先進微電子及磁性元件方面具備很大的應用潛力,因此其相關研究吸引了相當大的注意。然而,若以傳統方法製作週期排列奈米線陣列,不僅需要的製程設備成本昂貴且其產率通常不高,所以本研究主要將著重於在發展不需複雜的微影設備即可製備出大量金屬奈米線之低成本高產率製程技術。
為製作尺寸可調變的鎳金屬奈米線陣列,首先將利用兩次陽極處理製程製備出一系列具有均勻且規則排列之孔洞結構的氧化鋁奈米模板。在本研究中藉由改變不同電解液組成、操作溫度和工作電壓調控,已可掌握製備20-50 nm各種均勻孔徑大小之氧化鋁奈米模板。進一步在控制適當電鍍條件並結合氧化鋁奈米模板技術後,我們成功地合成出大量純鎳金屬奈米線。這些鎳金屬奈米線的尺寸,可分別對應於所使用之氧化鋁奈米模板的孔洞大小和長度,其奈米線直徑和長度可調控在約20-50 nm和60-67 ?m範圍。根據穿透式電子顯微鏡(TEM)與選區電子繞射(SAED)分析,可發現所合成的鎳金屬奈米線皆為多晶,且這些多晶鎳金屬奈米線擁有FCC的晶格結構。另一方面,研究中也發現鎳金屬奈米線對外加磁場的變化十分敏感。本研究中我們實驗證明,利用外加磁場的控制,鎳金屬奈米線會沿著磁場的方向在矽晶基材上組裝排列出大面積二維規則之奈米結構圖案。
As the critical dimensions for advanced devices continue to scale towards the nanometer regime, one-dimensional (1-D) metal nanowires have attracted much attention due to their potential applications in advanced microelectronic and magnetic devices. However, the conventional methods used to fabricate periodic nanowires arrays are usually high-cost consuming and low output efficiency. Therefore, this study mainly focused on the synthesis of large-scale nickel metal nanowires at low-cost and high-throughput without complex lithography.
To fabricate the size-tunable Ni metal nanowire arrays, the anodic alumina oxide (AAO) templates with 2-D periodic nanopore structures were firstly prepared by the two-step anodizing process. In this work, the pore sizes of AAO templates can be tuned from 20-50 nm by varying the component of electrolyte, the processing temperature, and the applied anodic voltage. Under controlled electrodeposition conditions, a large amount of pure Ni metal nanowires were successfully synthesized by using the AAO template technique. The diameters and lengths of the as-synthesized Ni nanowires were measured to be about 20-50 nm and 60-67 ?m, respectively, corresponding to the pore sizes and thickness of AAO templates. Based on the TEM and SAED analysis, it is found that all the prepared Ni nanowires were polycrystalline, and these polycrystalline Ni nanowires possess a FCC structure. On the other hand, the as-synthesized Ni nanowires were found to be very sensitive to the magnetic field. In this study, we experimentally demonstrated that by applying external magnetic fields, these Ni nanowires can be controlled to align along the directions of applied magnetic fields and assemble into a 2-D ordered pattern on Si substrate.
第1章 緒論 1
1-1 前言 1
1-2 陽極氧化鋁模板 2
1-3 金屬奈米線的製備 6
1-4 金屬奈米線電性性質 9
1-5 研究動機 9
第2章 實驗步驟 11
2-1 氧化鋁模板製備 11
2-1-1 利用草酸作為陽極處理溶液製作氧化鋁模板 11
2-1-2 利用硫酸作為陽極處理溶液製作氧化鋁模板 12
2-2 鎳金屬奈米線沈積 13
2-3 鎳金屬奈米線磁性排列 14
2-4 鎳金屬奈米線電性量測分析 14
2-4-1 原子力顯微鏡 14
2-4-2 掃描式電子顯微鏡 15
2-4-3 穿透式電子顯微鏡 15
2-4-4 高分辨穿透式電子顯微鏡與X光能量散佈光譜儀 16
2-4-5 半導體量測分析儀 16
第3章 結果與討論 17
3-1 氧化鋁模板 17
3-1-1 商用氧化鋁濾膜 17
3-1-2 草酸製程 17
3-1-3 硫酸製程 22
3-2 電化學沈積鎳金屬奈米線 24
3-3 鎳金屬奈米線磁性排列 27
3-4 鎳金屬奈米線電性量測 28
第4章 結論與未來展望 29
4-1 結論 29
4-2 未來展望 29
4-2-1 不同形狀之奈米線及奈米管和其他奈米結構研究 29
4-2-2 奈米散熱器 30
4-2-3 直立於矽晶基材上之金屬奈米線/奈米管陣列 30
參考文獻 31
[1]G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics. 38 (1965) 56-59.
[2]D. H. Kim, J. R. Jeong, Y. C. Cho, and S. C. Shin “Micromagnetic Simulation of Magnetization Reversal Behavior of Co/Pt Multilayer Nanodot Array Prepared by Colloidal Lithograpy,” J. Magn. Magn. Mater. 286 (2005) 23-26.
[3]M. Aslam, R. Bhobe, N. Alem, S. Donthu, and V. P. Dravid, “Controlled Large-Scale Synthesis and Magnetic Properties of Single-Crystal Cobalt Nanorods,” J. Appl. Phys. 98 (2005) 074311.
[4]L. Cui, H. Gu, H. Xu, and D. Shi, “Synthesis and Characterization of Superparamagnetic Composite Nanorings,” Mater. Lett. 60 (2006) 2929-2932.
[5]I. A. Levitsky, J. Liang, and J. M. Xu, “Highly Ordered Arrays of Organic-Inorganic Nanophotonic Composites,” Appl. Phys. Lett. 26 (2002) 1696-1698.
[6]A. Saedi, M. Ghorbani, “Electrodeposition of Ni-Fe-Co Alloy Nanowire in Modified AAO Template,” Mater. Chem. Phys. 91 (2005) 417-423.
[7]T. T. Xu, R. D. Piner, and R. S. Ruoff, “An Improved Method To Strip Aluminum from Porous Anodic Alumina Films,” Langmuir 19 (2003) 1443-1445.
[8]T. Shimizu, M. Nagayanagi, T. Ishida, O. Sakata, “Epitaxial Growth of Cu Nanodot Arrays Using an AAO Template on a Si Substrate,” Electrochem Solid-State Lett. 9(4) (2006) J13-J16.
[9]X. Wang, G. R. Han, “Fabrication and Characterization of Anodic Aluminum Oxide Template,” Microelectron. Eng. 66 (2003) 166-170.
[10]J. N. Chazalviel, R. B. Wehrspohn, and F. Ozanam, “Electrochemical Preparation of Porous Semiconductors: from Phenomenology to Understanding,” Mater. Sci. Eng., B69-70 (2000) 1-10.
[11]C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism,” Nature. 359 (1992) 710-712.
[12]R. M. Metzger, V. V. Konovalov, M. Sun, T. Xu, G. Zangari, B. Xu, M. Benakli, and W. D. Doyle, “Magnetic Nanowires in Hexagonally Ordered Pores of Alumina,” IEEE Trans. Magn. 36 (2000) 30-35.
[13]K. Nielsch, R. Hertel, R. B. Wehrspohn, J. Barthel, J. Kirschner, U. Gösele, S. F. Fischer, and H. Kronmüller, “Switching Behavior of Single Nanowires inside Dense Nickel Nanowire Arrays,” IEEE Trans. Magn. 38 (2002) 2571-2573.
[14]Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered Semiconductor ZnO Nanowire Arrays and Their Photoluminescence Properties,” Appl. Phys. Lett. 76 (2000) 2011-2013.
[15]G. E. Thompson, “Porous Anodic Alumina : Fabrication, Characterization and Applications,” Thin Solid Films. 297 (1997) 192-201.
[16]O. Jessensky, F. Muller, and U. Gösele, “Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina,” Appl. Phys. Lett. 72 (1998) 1173-1175.
[17]H. Masuda, and K. Fukuda, “Ordered Metal Nanohole Arrays by Two-Step Replication of Honeycome Structure of Anodic Alumina,” Science. 268 (1995) 1466-1468.
[18]F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,” Chem. Mater. 10 (1998) 2470-2480.
[19]Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm Period Silicon Antireflection Structures Fabricated Using a Porous Alumina Membrane Mask,” Appl. Phys. Lett. 78 (2001) 142-143.
[20]H. Masuda, H. Yamada, M. Satoh, and H. Asoh, “Highly Ordered Nanochannel-Array Architecture in Anodic Alumina,” Appl. Phys. Lett. 71 (1997) 2770-2772.
[21]H. Masuda, M. Yo, Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, “Self-Repair of Ordered Pattern of Nanometer Dimensions Based on Self-Compensation Properties of Anodic Porous Alumina,” Appl. Phys. Lett. 78 (2001) 826-828.
[22]W. Lee, R. Ji, C. A. Ross, U. Gçsele, and K. Nielsch, “Wafer-Scale Ni Imprint Stamps for Porous Alumina Membranes Based on Interference Lithography,” Small 8-9 (2006) 978-982.
[23]H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and Triangular Nanohole Array Architectures in Anodic Alumina,” Adv. Mater. 13 (2001) 189-192.
[24]R. Krishnan, H. Q. Nguyen, C. V. Thompson, W. K. Choi, and Y. L. Foo, “Wafer-Level Ordered Arrays of Aligned Carbon Nanotubes with Controlled Size and Spacing on Silicon,” Nanotechnology 16 (2005) 841-845.
[25]C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered Anodic Alumina Nanochannels on Focused-Ion-Beam Prepatterned Aluminum Surfaces,” Appl. Phys. Lett. 78 ( 2001) 120-122.
[26]N. W. Liu, A. Datta, C. Y. Liu, and Y. L. Wang, “High-Speed Focused-Ion-Beam Patterning for Guiding the Growth of Anodic Alumina Nanochannel arrays,” Appl. Phys. Lett. 82 (2003) 1281-1283.
[27]Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-Emitting ZnO Nanowires Synthesized by a Physical Vapor Deposition Approach,” Appl. Phys. Lett. 78 (2001) 407-409.
[28]B. Xiang, Y. Zhang, Z. Wang, X. H. Luo, Y. W. Zhu, H. Z. Zhang and D. P. Yu, “Field-Emission Properties of TiO2 Nanowire Arrays,” J. Phys. D: Appl. Phys. 38 (2005) 1152-1155.
[29]L. Wang , X. Zhang, S. Zhao, G. Zhou, Y. Zhou, and J. Qi “Synthesis of Well-Aligned ZnO Nanowires by Simple Physical Vapor Deposition on C-Oriented ZnO Thin Films without Catalysts or Additives,” Appl. Phys. Lett. 86 (2005) 024108.
[30]A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, and R. P. H. Chang, “A Method For Synthesizing Large Quantifies of Carbon Nanotubes and Encapsulated Copper Nanowire,” Appl. Phys. Lett. 69 (1996) 345-347.
[31]S. Mathur, S. Barth, U. Werner, F. Hernandez-Ramirez, and A. Romano-Rodriguez, “Chemical Vapor Growth of One-Dimensional Magnetite Nanostructures,” Adv. Mater. 20 (2008) 1550-1554.
[32]S. N. Cha, B. G. Song, J. E. Jang, J. E. Jung, I.T. Han, J. H. Ha, J. P. Hong, D. J. Kang, and J. M. Kim, “Controlled Growth of Vertically Aligned ZnO Nanowires with Different Crystal Orientation of The ZnO Seed Layer,” Nanotechnology 19 (2008) 235601.
[33]N. I. Kovtyukhova, T. E. Mallouk, and T. S. Mayer, “Templated Surface Sol-Gel Synthesis of SiO2 Nanotubes and SiO2-Insulated Metal Nanowires,” Adv. Mater. 15 (2003) 780-785.
[34]X. Ma, H. Zhang, J. Xu, J. Niu, Q. Yang, J. Sha, and D. Yang, “Synthesis of La11-x CaxMnO3 Nanowires by a Sol-Gel Process,” Chemical Physics Letters 363 (2002) 579-582.
[35]C. H. Bae, S. M. Park, S. E. Ahn, D. J. Oh, G. T. Kim, J. S. Ha, “Sol-Gel Synthesis of Sub-50 nm ZnO Nanowires on Pulse Laser Deposited ZnO Thin Films,” Appl. Surf. Sci. 253 (2006) 1758-1761.
[36]C. Wang, M. Chen, G. Zhu, and Z. Lin, “A Novel Soft-Template Technique to Synthesize Metal Ag Nanowire,” J. Colloid Interface Sci. 243 (2001) 362-364.
[37]H. Xu, D. H. Qin, Z. Yang, and H. L. Li, “Fabrication and Characterization of Highly Ordered Zirconia Nanowire Arrays by Sol-Gel Template Method,” Mater. Chem. Physics. 80 (2003) 524-528.
[38]Y. Zhou, J. Huang, C. Shen, and H. Li, “Synthesis of Highly Ordered LiNiO2 Nanowire Arrays in AAO Templates and Their Structural Properties,” Mater. Sci. Eng., A335 (2002) 260-267.
[39]M. K. Li, M. Lu, L. B. Kong, X. Y. Guo, and H. L. Li, “The synthesis of MWNTs/SWNTs Mulitiple Phase Nanowires Arrays in Porous Anodic Aluminum Oxide Templates,” Mater. Sci. Eng., A354 (2003) 92-96.
[40]X. Y. Yuan, T. Xie, G. S. Wu, Y. Lin, G. W. Meng, and L. D. Zhang, “Fabrication of Ni-W-P Nanowire Arrays by Electroless Deposition and Magnetic Studies,” Physica E 23 (2004) 75-80.
[41]X. Y. Yuan, G. S. Wu, T. Xie, Y. Lin, G. W. Meng, and L. D. Zhang, “Autocatalytic Redox Fabrication and Magnetic Studies of Co-Ni-P alloy Nanowire Arrays,” Solid State Commun. 130 (2004) 429-432.
[42]D. Gao, J. Fu, Y. Xu, and D. Xue, “Preparation and Magnetic Properties of Nd5Fe95 − xBx Nanowire Arrays,”Materials Letters 62 (2008) 3070–3072.
[43]J. H. Min, J. H. Wu, J. U. Cho, J. H. Lee, Y. D. Ko, H. L. Liu, J. S. Chung, and Y. K. Kim, “Electrochemical Preparation of Co3Pt Nanowires,” phys. stat. sol. (a) 204 (2007) 4158-4161.
[44]H. N. Hu, H. Y. Chen, S. Y. Yu, J. L. Chen, G. H. Wu, F. B. Meng, J. P. Qu, Y. X. Li, H. Zhu, and J.Q. Xiao, “Textured Co Nanowire Arrays with Controlled Magnetization Direction,” J. Magne. Mater. 295 (2005) 257-262.
[45]R. Zhu, H. Zhang, Z. Chen, S. Kryukov, and L. DeLong, “Horizontally Aligned Single Array of Co Nanowires Fabricated in One-Dimensional Nanopore Array Template,” Electrohem. Solid-State Lett., 11 6(2008 ) K57-K60.
[46]J. H. Min, J. H. Wu, J. U. Cho, J. H. Lee, Y. D. Ko, H. L. Liu, J. S. Chung, and Y. K. Kim, “Electrochemical Preparation of Co3Pt Nanowires,” phys. stat. sol. (a) 204 (2007) 4158-4161.

[47]A. Kazadi Mukenga Bantu, J. Rivas, G. Zaragoza, M. A. Lopez-Quintela, and M. C. Blanco, “Influence of the Synthesis Parameters on The Crystallization and Magnetic Properties of Cobalt Nanowires,” J. Non-Cryst. Solids 287 (2001) 5-9.
[48]J. H. Jeong, S. H. Kim, J. H. Min, Y. K. Kim, and S. S. Kim, “High-Frequency Noise Absorbing Properties of Nickel Nanowire Arrays Prepared by DC Electrodeposition,” phys. stat. sol. (a) 204 (2007) 4025-4028.
[49]D. H. Qin, L. Cao, Q. Y. Sun, Y. Huang, H. L. Li, “Fine Magnetic Properties Obtained in FeCo Alloy Nanowire Arrays,” Chem. Phys. Lett. 358 (2002) 484-488.
[50]G. B. Ji, W. Chen, S. L. Tang, B. X. Gu, Z. Li, and Y. W. Du, “Fabrication and Magnetic Properties of Ordered 20 nm Co-Pb Nanowire Arrays,” Solid State Commun. 130 (2004) 541-545.
[51]K. Miyazaki, S. Kainuma, K. Hisatake, T. Watanabe, and N. Fukumuro, “Giant Magnetoresistance in Co-Cu Granular Alloy Films and Nanowires Prepared by Pulsed-Electrodeposition,” Electrochim. Acta, 44 (1999) 3713-3719.
[52]K. Nielsch, F. Müller, A. P. Li, and U. Gösele “Uniform Nickel Deposition into Ordered Alumina Pores by Pulsed Electrodeposition,” Adv. Mater. 12 (2000) 582-586.
[53]A. Ursache, J. T. Goldbach, T. P. Russell, and M. T. Tuominena, “Pulse Electrodeposition and Electrochemical Quartz Crystal Microbalance Techniques for High Perpendicular Magnetic Anisotropy Cobalt Nanowire Arrays,” J. Appl. Phys. 97 (2005) 10J322.
[54]A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Haxagonal Pore Arrays with a 50-420 nm Interpore Distance Formed by Self-Organization in Anodic Alumina,” J. Appl. Phys. 84 (1998) 6023-6026.
[55]S. K. Hwang, J. Lee, S. H. Jeong, P. S. Lee, and K. H. Lee, “Fabrication of Carbon Nanotube Emitters in an Anodic Aluminium Oxide Nanotemplate on a Si Wafer by Multi-Step Anodization,” Nanotechnology 16 (2005) 850-858.
[56]Y. J Chen, J. H. Hsu, and H. N. Lin, “Fabrication of Metal Nanowires by Atomic Force Microscopy Nanoscratching and Lift-Off Process,” Nanotechnology 16 (2005) 1112-1115.
[57]H. Cao, L. Wang, Y. Qiu, Q. Wu, G. Wang, L. Zhang and X. Liu, “Generation and Growth Mechanism of Metal (Fe,Co,Ni) Nanotube array,” Chemphyschem 7 (2006) 1500-1504.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 氧化鋁模板法製備鎳金屬奈米線及其與(001)Si基材之界面反應研究
2. 結合鎳金屬吸附的製程技術搭配具有加厚之汲/源極與薄通道低溫複晶矽薄膜電晶體之研究
3. 萘啶胺衍生物配基及其直線型四核鎳金屬錯合物之合成、構造與物理性質研究
4. 鎳金屬錯合物催化末端炔類加成至乙烯基環氧化合物之反應
5. I.新穎單核鎳金屬觸媒之開發及其聚合反應研究II.新穎有機薄膜電晶體材料DPDTT之開發
6. 鎳金屬矽化物誘導橫向結晶垂直通道低溫複晶矽薄膜電晶體之研究
7. 鎳金屬誘發非晶矽薄膜側向結晶-成長機制與低溫複晶矽薄膜電晶體效能之研究
8. 自營氫細菌與零價鎳金屬結合去除三氯乙烯之研究
9. 新型萘啶吡啶胺配基及其鎳金屬串錯合物之合成與結構研究
10. 胺-亞胺雙牙配位基鎳金屬錯合物催化烯類的聚合反應及其反應機構探討
11. 鎳金屬錯合物催化1,2-雙烯之加成反應與7-氧庚二烯及其衍生物之開環偶合反應及以鈷金屬錯合物為催化劑之環化加成反應
12. 被擔持鎳金屬觸媒於合成高分子型聚環氧乙烯之氨化反應研究
13. 一、停經後婦女服用大豆植物性荷爾蒙後對於凝血系統影響之評估二、鎳金屬抑制人類細胞核酸配對錯誤修復機制之分析
14. 鎳金屬錯合物催化7-異合雙環[2.2.1]庚二烯與末端炔及有機碘化物之耦合反應的探討
15. 鎳金屬矽化物催化結晶方法對低溫複晶矽薄膜電晶體