|
[1]M. Kao, P. M. Smith, P. Ho, P. Chao, K. H. G. Duh, A. A. Jobra, and J. M. Ballingall, “Very high power-added efficiency and low-noise 0.15-μm gate length pseudomorphic HEMT’s,” IEEE Electron Device Lett., nol. 10, p. 580, 1989.
[2]G. M. Metze, J. F. Bass, T. T. Lee, A. B. Cornfeld, J. L. Singer, H. L. Hung, H. C. Huang, and K. P. Pande, “High-gain, V-band, low-noise MMIC amplifiers using pseudomorphic MODFETs,” IEEE Electron Device Lett., vol. 11, p. 24, 1990.
[3]A. Ketterson, J. W. Seo, M.Tong, K. Nummila, D. Ballegeer, S. M. Kang, K. Y. Cheng, and I. Adesida, “A 10-GHz bandwidth pseudomorphic GaAs/InGaAs/AlGaAs MODFET-based OEIC receiver,” IEEE Trans. Electron Devices, vol. 39, p.2676, 1992.
[4]C. S. Wu, C. K. Pao, W. Yan, H. Kanber, M. Hu, S. X. Bar, A. Kurdoghlian, Z. Bardia, D. Bosch, C. Seashore, and M. Gawronski, “Pseudomorphic HEMT manufacturing technology for multifunctional Ka-band MMIC applications,” IEEE Microwave Theory and Tech., vol. 43, p. 257, 1995.
[5]S. E. Rosenbaum, B. K. Kormanyos, L. M. Jellian, M. Matloubian, A. S. Brown, L. E. Larson, L. D. Nguyen, M. A. Thompsom, L. P. B. Katehi, and G. M. Rebeiz, “155- and 213 GHz AlInAs/GaInAs/InP HEMT MMIC oscillators,” IEEE Microwave Theory and Tech., vol. 43, p. 927, 1995.
[6]T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, “a new Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1-xAs Heterojunctions”, Jap. J. Appl. Phys., vol. 19, no. 5, p. L225-L227, 1980.
[7]S. Karmalkar, G. Ramesh, “A simple yet comprehensive unified physical model of the 2D electron gas in delta-doped and uniformly doped high electron mobility transistors,” IEEE Trans. Electron Devices, vol. 47, p.308, 2000.
[8]Y. Ando, T. Itoh, “Accurate modeling for parasitic source resistance in two-dimensional electron gas field-effect transistors,” IEEE Trans. Electron Devices, vol. 36, p.1036, 1989.
[9]L. D. Nguyen, W. J. Schaff, P. J. Tasker, A. N. Lepore, L. F. Palmateer, M. C. Foisy, L. F. Eastman, “Charge control, DC, and RF performance of a 0.35 μm pseudomorphic AlGaAs/InGaAs modulation-doped field-effect transistor,” IEEE Trans. Electron Devices, vol. 35, p.139, 1988.
[10]A. Lepore, M. Levy, H. Lee, E. Kohn, D. Radulescu, R. Tiberio, P. Tasker and L. Eastman, “Fabrication and performance of 0.1-μm gate-length AlGaAs/GaAs HEMTs with unity current gain cutoff frequency in excess of 110 GHz,” IEEE Trans. Electron Devices, vol. 35, p. 2441, 1988.
[11]K. I. Song, C. Caneau, K. B. Chough and W. P. Hong, “GaInP/GaAs double heterojunction bipolar transistor with high fT, fmax and breakdown voltage,” IEEE Electron Device Lett., vol. 15, p. 10, 1994.
[12]Y. Yamashita, A. Endoh, K. Shinohara, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimura, “Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTs With an Ultrahigh fT of 562 GHz,” IEEE Electron Device Lett., vol. 23, No. 10, October 2002.
[13]K. Sawada, K. Makiyama, T. Takahashi, K. Nozaki, M. Igarashi, and N. Hara, “Fabrication of 0.1 μm-gate InP HEMTs Using i-Line Lithography,” IEEE conference 2003.
[14]K. Shinohara, Y. Yamashita, A. Endoh, I.Watanabe, K. Hikosaka, T. Matsui, T. Mimura, and S. Hiyamizu, “547-GHz fT In0.7Ga0.3As–In0.52Al0.48As HEMTs With Reduced Source and Drain Resistance,” IEEE Electron Device Lett., Vol. 25, No. 5, May 2004.
[15]P. C. Chao, A. Tessmer, K. H. G. Duh, M. Y. Kao, P. Ho, P. Ho, P. M. Smith, J. M. Ballingall, S. M. Liu, and A. A. Jabra, “W-band low-noise InAlAs/InGaAs lattice matched HEMT’s,” IEEE Electron Device Lett., vol. 11, p. 59, 1990.
[16]K. Chen, T. Enoki, K. Maezawa, K. Arai, and M. Yamamoyo, “High-performance InP-based enhancement HEMTs using nonalloyed ohmic contacts and Pt-buried-gate technologies,” IEEE Trans. Electron Devices, vol. 43, p. 252, 1996.
[17]A. Mahajan, M. Arafa, P. Fey, C. Caneau, and I. Adesida, “ 0.3 μm gate length enhancement-mode AlInAs/InGaAs/InP high-electron mobility transistor,” IEEE Device Lett., vol. 18, p. 284, 1997.
[18]J. C. P. Chang, J. Chen, J. M. Fernandez, H. H. Wieder, and K. L.Kavanagh, “Strain relaxation of compositionally graded InxGa1-xAs buffer layers for modulation-doped In0.3Ga0.7As/In0.29Al0.71As heterostructures,” Appl. Phys. Lett., vol. 60, p. 1129, 1992.
[19]Meneghesso, G.; Buttari, D.; Perin, E.; Canali, C.; Zanoni, E. “Improvement of DC, low frequency and reliability properties of InAlAs/InGaAs InP-based HEMTs by means of an InP etch stop layer,” Electron Devices Meeting, 1998. IEDM ''98 Technical Digest., International6-9 Dec. 1998 Page(s):227 – 230.
[20]F. Medjdoub, D. Theron, F. Dessenne, R. Fauquembergue, and J. C. De Jaeger, “Monte Carlo study of the breakdown of an AlInAs/GaInAs HEMT on InP with an InP etch stop layer,” 2002 IEEE.
[21]T. Suemitsu, H. Yokoyama, T. Ishii, T. Enoki, G. Meneghesso, and E. Zanoni, “30-nm two-step recess gate InP-based InAlAs/InGaAs HEMTs,” IEEE Trans. Electron Devices, vol. 49, p. 1694, 2002.
[22]F. Bobin, H. Meier, O. J. Homan, and W. Bachtold, “A Novel Asymmetric Gate Recess Process for InP HEMTs,” J. Vac. Sci. Technol. B, vol. 11, no.6, pp. 2560-2564, 1993.
[23]S. R. Bahl, and J. A. Del Alamo, “Breakdown voltage enhancement from channel quantization in InAlAs/n+-InGaAs HFET’s,” IEEE Electron Device Lett., vol. 13, pp.123-125, Feb. 1992.
[24]G. Meneghesso, A. Neviani, M. Matloubian, T. Liu, J. J. Brown, C. Canali, and E. Zanoni, “On-State and Off-state Breakdown in GaInAs/InP Composite-Channel HEMT’s with Variable GaInAs Channel Thickness,” IEEE Transactions on Electron Device, vol.46, no. 1, January 1999.
[25]Mark H. Somerville, Chris S. Putnam, and Jesus A. del Alamo, “Determining Dominant Breakdown Mechanism in InP HEMTs,” IEEE Electron Device Lett., vol. 22, no. 12 December 2001.
[26]A. Sleiman, A. D. Carlo, P. Lugli, G. Meneghesso, E. Zanoni, and J. L. Thobel, “Channel Thickness Dependence of Breakdown Dynamic in InP-Based Lattice-Matched HEMTs,” IEEE Transactions on Electron Device, vol. 50, no. 10, October 2003.
[27]T. Enoki, K. Arai, A. Kohzen, and Y. Ishii, “Design and characteristics of InGaAs/InP composite-channel HEMT’s,” IEEE Trans. Electron Devices, vol. 42, pp. 1414-1418, Aug. 1995.
[28]S. M. Wang, C. Karlsson, N. Rorsman, M. Bergh, E. Olsson, T. G. Andresson, and H. Zirath, “Molecular beam epitaxy growth and characterization of InxGa1-xAs (0.57 ≦ x ≦ 1) on GaAs using InAlAs graded buffer,” J. Cryst. Growth, vol. 175/176, p. 1016, 1997.
[29]K. K. Lee, T. Brown, G. Dagnall, R. Bicknell-Tassius, A. Brown, and G. S. May, “Using neural networks to construct models of the molecular beam epitaxy process,” IEEE Trans. Semi. Manufac., vol. 13, p. 34, 2000.
[30]P. H. Garrett, J. J. Heyob, V. J. Hunt, S. R. LeClair, O. D. Patterson, “Decoupled flux control for molecular beam epitaxy,” IEEE Trans. Semi. Manufac., vol. 6, p. 348, 1993.
[31]M. Jaffe, G.E Tatagiri.; G Collins, in Proc. IEEE/Cornell Conf., (1987). 70.
[32]R. T. Hsu, H. M. Shieh, W. C. Hsu, and T. S. Wu, “Enhanced current driving capability GaAs/graded InxGa1-xAs high electron mobility transistor,” Solid-State Electron, vol. 36, p. 1143, 1993.
[33]Y. J. Li, J. S. Su, Y. S. Lin and W. C. Hsu, “Investigation of a graded channel InGaAs/GaAs heterostructure transistor,” Superlattices and Microstructures, vol. 28, p. 47, 2000.
[34]Fazal Ali and Aditya Gupta, “HEMTs and HBTs : Devices, Fabrication and Circuits”, Artech House, Boston London.
[35]W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, Y. H. Wu, “On the improvement of gate voltage swing in δ-doped GaAs/InxGa1-xAs pseudomorphic heterostructures,” IEEE Trans. Electron Devices, vol. 40, p. 1630, 1993.
[36]W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, H. J. Pan, “Temperature-dependent investigation of a high-breakdown voltage and low-leakage current In0.49Ga0.51P/In0.15Ga0.85As pseudomorphic HEMT,” IEEE Electron Device Lett., vol. 20, p. 274, 1998.
[37]R. Menozzi, M. Borgarino, Y. Baeyens, M. Van Hove, F. Fantini, “On the effects of hot electrons on the DC and RF characteristics of lattice-matched InAlAs/InGaAs/InP HEMTs”, IEEE Microwave and Guided Wave Lett., vol. 7, p. 3, 1997.
[38]M. Feng, D. R. Scherrer, P. J. Apostolakis, J. W. Kruse, “Temperature dependent study of the microwave performance of 0.25 μm gate GaAs MESFETs and GaAs pseudomorphic HEMTs”, IEEE Trans. Electron Devices, vol. 43, p.852, 1996.
[39]Suemitsu, T., Enoki, T., Sano, N., Tomizawa, M., Ishii, Y., “An analysis of the kink phenomena in InAlAs/InGaAs HEMT''s using two-dimensional device simulation,” IEEE Transactions on Electron Devices, vol. 45 , no. 12 , Dec. 1998 p.2390 – 2399.
[40]Somerville, M.H., Ernst, A., del Alamo, J.A., “A physical model for the kink effect in InAlAs/InGaAs HEMTs,” IEEE Transactions on Electron Devices, vol. 47 , no. 5 , May 2000 p.922 – 930.
[41]Horio, K., Wakabayashi, A., “Numerical analysis of surface-state effects on kink phenomena of GaAs MESFETs,” IEEE Transactions on Electron Devices, vol. 47, no. 12, Dec. 2000 p.2270 – 2276.
[42]Haruyama, J., Negishi, H., Nishimura, Y., Nashimoto, Y., “Substrate-related kink effects with a strong light-sensitivity in AlGaAs/InGaAs PHEMT,” IEEE Transactions on Electron Devices, vol. 44 , no. 1 , Jan. 1997 p.25 – 33.
[43]Mansoor M. Ahmed, “Schottky Barrier Depletion Modification — A source of output conductance in submicron GaAs MESFET,” IEEE Transactions on Electron Devices, vol. 48, no. 5, May 2001, pp. 830-834.
|