跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪崇瑜
研究生(外文):Chung-Yu Hong
論文名稱:多模干涉式光子晶體分波器之設計與分析
論文名稱(外文):Design and Analysis of Multimode Interference-based Photonic Crystal Wavelength-Division-Demultiplexers
指導教授:黃遠東黃遠東引用關係
指導教授(外文):Yang-Tung Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:60
中文關鍵詞:光子晶體多模干涉光子晶體波導波長分波器自生成像
外文關鍵詞:photonic crystalmultimode interferencePCWwavelength-division-demultiplexerself-imaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究二維光子晶體波導中的多模干涉效應(Multimode Interference,MMI)及其自生成像原理(Self-Imaging)。首先,利用有限差分時域法(Finite-Difference Time-domain,FDTD)來觀察二維光子晶體多模波導中的成像現象和成像位置。發現到其成像位置與模態傳輸分析(Modal Propagation Analysis,MPA)所得到的成像位置一致。利用以上兩種方法(FDTD、MPA)在各個不同的光子晶體多模波導作驗證,都可以得到相符的結果。證明傳多模波導的成像原則與分析方式可以套用在光子晶體多模波導上。本研究並應用光子晶體多模干涉現象設計了一個一分為二的波長分波器(Wavelength-Division-Demultiplexer),分波對象為1.480微米及1.625微米。有限差分時域法模擬得到其效率為:在1.480微米有0.33dB的插入損耗(Insertion Loss)及15.4dB的對比(Contrast),在1.625微米有0.33dB的插入損耗及12.9dB的對比。
In this study, the multimode interference (MMI) effect and its principle (self-imaging) in 2-D photonic crystal waveguides (PCWs) are investigated. By using the finite-difference time-domain (FDTD) computation performed on a multimode photonic crystal line-defect waveguide, the self-imaging phenomenon and the imaging positions along the propagation axis are observed, and it is found that the results are in good agreement with those derived from the modal propagation analysis (MPA). This mean that the analytic methods for MMI in conventional multimode waveguides still can be applied in 2-D line-defect PCWs. We take several multimode PCWs for examples to confirm this idea. Moreover, we design a photonic crystal 1-to-2 1.480/1.625μm wavelength-division-demultiplexer based on MMI in PCWs. Its performance in numerically simulated by FDTD computation. The results show that the insertion loss is about 0.33 (dB) for the wavelength 1.480μm, and 0.33 (dB) for 1.625μm. The contrast is about 15.45 (dB) for the wavelength 1.480μm, and 12.9 (dB) for 1.625μm, respectively.
1. Introduction 1
2. Analytic Theories and Methods for Photonic Crystals 4
2.1 Introduction 4
2.2 Plane-Wave Expansion Method 5
2.3 Two-Dimensional Photonic Crystals 8
2.4 FDTD Method 13
2.5 Band Diagrams Calculation 16
3. Modal Propagation Analysis for Multimode Interference 22
3.1 Introduction 22
3.2 The Self-Imaging Principle 22
3.3 Modal Propagation Analysis 25
4. Self-Imaging Phenomena in Multimode PCWs 29
4.1 Introduction 29
4.2 Three-line-defects Multimode PCWs 30
4.3 Four-line-defects Multimode PCWs 36
4.4 Five-line-defects Multimode PCWs 42
5. Design of a PC Wavelength-Division-Demultiplexer 47
5.1 Introduction 47
5.2 Design of a 1-to-2 1.480/1.625 um
Wavelength-Division-Demultiplexer 48
6. Conclusion 55
E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., vol. 58, no. 20, pp. 2059--2062, 1987.
S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., vol. 58, no. 23, pp. 2486--2489, 1987.
C. Kittel, Introduction to Solid State Physics, 8th Ed., John Wiley & Sons, USA, 2005.
J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, "Photonic crystals: putting a new twist on light," Nature, vol. 386, pp. 143--149, 1997.
J. Mc. Nab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrance-type photonic crystal waveguides," Opt. Express, vol. 11, pp. 2927, 2003.
E. Dulkeith, S. J. McNab, and Y. A. Vlasov, "Mapping the optical properties of the slab-type two-demensional photonic crystal waveguides," Phys. Rev. B, vol. 72, pp. 102-115, 2005.
J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals, molding the flow of light, Princeton University Press, 1995.
A. Mekis, J. C. Chen, I. Kurland, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett., vol. 77, pp. 3787--3790, 1996.
A. Chutinan, and S. Noda, "Waveguides and waveguide bends in two-dimensional photonic crystal slabs," Phys. Rev. B, vol. 62, pp. 4488--4492, 2000.
K. Sakoda, Optical properties of photonic crystals, Springer-Verlag, 2001.
K. Yamada, H. Morita, A. Shinya, and M. Notomi, "Improved line-defect structures for photonic-crystal waveguides with high group velocity," Optics Communications, vol. 198, pp. 395-402, 2001.
M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, "Structural tuninng of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs," IEEE Journal of Quantum Electromics, vol. 38, no. 7, 2002.
M. Locar, T. Doll, J. Vuckovic, and A. Scherer, "Design and fabrication of silicon photonic crystal optical waveguides," Journal of Lightwave Technology, vol. 18, no. 10, 2000.
L. B. Soldano, and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, Apr. 1995.
M. R. Paiam, C. F. Janz, R. I. MacDonald, and J. N. Broughton, "Compact planar 980/1550-nm wavelength multi/demultiplexer based on multimode interference," IEEE Photonics Technology Letters, vol. 7, no. 10, pp. 1180-1182, Oct. 1995.
Z. Li, Z. Chen, and B. Li, "Optical pulse controlled all-optical logic gates in SiGe/Si multimode interference," Optics Express, vol. 13, no. 3, pp. 1033-1038, Feb. 2005.
H.-J. Kim, I. Park, B.-H. O, S.-G. Park, E.-H. Lee, and S.-G. Lee, "Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing," Optics Express, vol. 12, no. 23, pp. 5625-5633, Nov. 2004.
Y. Zhang, Z. Li, and B. Li, "Multimode interference effect and self-imaging principle in two-dimensional silicon photonic crystal waveguides for terahertz waves," Optics Express, vol. 14, no. 7, pp. 2679-2689, April 2006.
T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, "Multimode interence-based photonic crystal waveguide power splitter," J. Lightwave Technol., vol. 22, no. 12, pp. 2842-2846, Dec. 2004.
Z. Li, Y. Zhang, and B. Li, "Terahertz photonic crystal switch in silicon based on self-imaging principle," Optics Express, vol. 14, no. 9, pp. 3887-3892, May 2006.
Q. Zhu, and B. Li, "Photonic crystal waveguide-based Mach-Zehnder demultiplexer," Applied Optics, vol. 45, no. 35, pp. 8870-8273, December 2006.
C.-C. Chen, C.-Y. Chen, W.-K. Wang, F.-H. Huang, C.-K. Lin, W.-Y. Chiu, and Y.-J. Chan, "Photonic crystal directional couplers formed by InAlGaAs nano-rods," Optics Express, vol. 13, no. 1, January 2005.
M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, "Two-dimensional photonic band structures," Opt. Commun., vol. 80, no. 3,4, pp. 199--204, 1991.
M. Plihal, and A. A. Maradudin, "Photonic band structure of two-dimensional sysyems: the triangular lattice," Phys. Rev. B, vol.44, no. 16, pp. 8565--8571, 1991.
S. L. Mccall, and P. M. Platzman, "Microwave propagation in two-dimensional dielectric lattices," Phy. Rev. Lett., vol.67, pp. 2017--2020, 1991.
K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propagat., vol. 14, pp.302--307, 1966.
J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., vol. 114, 1994.
M. Koshiba, "High-performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microwave Wireless. Compon. Lett., vol. 11, 2001.
H. F. Talbot, "Facts relating to optical science No. IV," London, Edinburgh Philosophical Mag., J. Sci., vol. 9, pp. 401-407, 1836.
O. Bryngdahl, "Image formation using self-imaging techniques," J. Opt. Soc. Amer., vol. 63, no. 4, pp. 416-419, 1973.
R. Ulrich, "Image formation by phase coincidences in optical waveguides," Optics Commun., vol. 13, no. 3, pp. 259-264, 1975.
R. Ulrich, "Light-propagation and imaging in planar optical waveguides," Nouv. Rev. optique., vol. 6, no. 5, pp. 253-262, 1975.
R. Ulrich, and G. Ankele, "Self-imaging in homogeneous planar optical waveguides," Appl. Phys. Lett., vol. 27, no. 6, pp. 337-339, 1975.
D. C. Chang, and E. F. Kuester, "A hybrid method for paraxial beam propagation in multimode optical waveguides," Trans. Microwave Theory Tech., vol. MTT-29, no. 9, pp. 923-933, 1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊