跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:達南杰
研究生(外文):Patra, Dhananjaya
論文名稱:合成含 Bithiazole 低能隙高分子及與氫鍵交聯體形成超分子網狀結構在太陽能高分子電池之應用
論文名稱(外文):Synthesis, Characterization, and Applications of Low Band-Gap Bithiazole-Based Polymers and their Supramolecular Networks Complexed with H-Bonded Cross-Linkers for Polymer Solar Cells
指導教授:林宏洲林宏洲引用關係
指導教授(外文):Lin, Hong-Cheu
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:157
中文關鍵詞:高分子自組裝Bithiazole
外文關鍵詞:polymerself assembleBithiazole
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
主要的研究方向是利用共軛性高的分子,及超分子的作用力,連結低能隙的高分子
(LBG),形成交聯的結構後,在有機太陽電池上的應用。這些 D-A 共軛高分子和其交聯的
結構,皆具有寬廣的吸收帶(300~750 nm),其中最低光學能隙為 1.68 eV,且它們的
HOMO 和 LUMO 皆位於理想的能階,電子與空穴的遷移率在 10 -6 -10 -8 cm 2 /Vs,由於以上
之理想的條件,將之運用於有機太陽能電池,並以 PC 61 BM 作為電子受體。
首先,合成以 LBG 為骨幹的高分子,平面的 carbazole 為電子予體,bithiazole 為電
子受體的共軛高分子(P1-P4),做光伏元件的研究。其中 bithiazole 對耐熱性、光學、電化
學、光伏性質隊主體結構的影響皆被研究。其光伏元件以 P4:PC 71 BM (1:1.5 w/w)得到最
佳效率(PCE) 為 1.01% 、短路電流(J sc ) 為 4.83 mA/cm 2 , 曲線因子(FF) 35%, 和開路電壓
( V oc ) = 0.60 V。同樣地,包含 dithieno[3,2-b:2’,3’-d]pyrroles (DTP)為電子予體的高分子(P1-
P5),最佳光電轉換效率為 P4:PCBM=1:1,PCE=0.69% 、短路電流(J sc ) 為 4.0 mA/cm 2 , 曲
線因子(FF) 43%, 和開路電壓( V oc ) = 0.40 V。
另外,也合成包含 bithiazole, DTP, 和 pendent melamine 為主幹的共軛高分子(PBT),
此系列高分子可以與具可配對氫鍵官能基的分子 F,進一步形成超分子的交聯結構
(PBT/F)。研究發現,多重氫鍵可以影響吸收光譜的範圍,HOMO 能階,和光伏的性質。
最佳光電轉換效率為 PBT/F : PC 71 BM =1:1,PCE=0.86% 、短路電流(J sc ) 為 4.97 mA/cm 2 ,
曲線因子(FF) 31.5%, 和開路電壓( V oc )= 0.55 V。此外,進一步合成以 LBG 為主幹,包含
bithiazole、DTP、和 pendent melamine 的新穎高分子 PBTH,並以具可配對氫鍵官能基的
分子 F、C 形成交聯結構 PBTH/C 和 PBTH/F(C 和 F 分別為 carbazole and fluorene 並含
uracil 官能基)。其多重氫鍵的結構利用 FT-IR 去證明,實驗結果證明,以超分子作用力行
程共軛的交聯結構,可以增加可見光,改變 HOMO 和晶體結構,進而提升光伏效應。以
重量比 polymer:PC 71 BM=1:1,其 PBTH/C、PBTH/F 和 PBTH 的光電轉換效率分別為
0.97、0.68 和 0.52%,以重量比 PBTH/C:PC 71 BM=1:2,最佳光電轉換效率為 1.56% 、短
路電流(J sc ) 為 7.16 mA/cm 2 , 曲線因子(FF) 36%, 和開路電壓( V oc ) = 0.60 V。
Prime aim of this dissertation is to bring together the areas of low band-gap conjugated
(LBG) polymers and their supramolecular networks complexed with π-conjugated cross-linkers
for the applications of organic solar cells. These D-A conjugated polymers/their supramolecular
networks possessed broad absorption sensitization in the region of 300-750 nm, having the
lowest optical band gaps as low as 1.68 eV. Both highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) energy levels of the LBG polymers/their
supramolecular networks were within the desirable range of ideal energy levels. Hole and
electron mobilities of these polymers/their supramolecular networks are in the range of 10 -6 -10 -8
cm 2 /Vs, which were calculated from the space-charge limited current experiments. Because of
these properties, these were applied to polymer solar cell (PSC) as electron donors with (6,6)-
phenyl-C 61 -butyric acid methyl ester (PC 61 BM) or (6,6)-phenyl-C 71 -butyric acid methyl ester
(PC 71 BM) as an acceptor.
First, a series of LBG donor-acceptor conjugated main-chain copolymers (P1-P4)
containing planar 2,7-carbazole as electron donors and bithiazole units (4,4'-dihexyl-2,2'-
bithiazole and 4,4'-dihexyl-5,5'-di(thiophen-2-yl)-2,2'-bithiazole) as electron acceptors were
synthesized and studied for the applications in PSC. The effects of electron deficient bithiazole
units on the thermal, optical, electrochemical, and photovoltaic properties of these LBG
copolymers were investigated. The photovoltaic device bearing an active layer of polymer blend
P4:PC 71 BM (1:1.5 w/w) showed the best power conversion efficiency (PCE) value of 1.01%
with a short circuit current density (J sc ) of 4.83 mA/cm 2 , a fill factor (FF) of 35%, and V oc = 0.60
V under 100 mW/cm 2 of AM 1.5 white-light illumination. Again, five LBG conjugated polymers
(P1-P5) consisting of one dithieno[3,2-b:2’,3’-d]pyrroles (DTP) unit as an electron donor and
various bithiazole units as electron acceptors were designed. The PSC device containing an
active layer of P5:PCBM=1:1 exhibited a best PCE of 0.69%, with a V oc of 0.40 V, a J sc of 4.0
mA/cm 2 , and a FF of 43% under the illumination of AM 1.5, 100 mW/cm 2 .
Furthermore, a conjugated main-chain copolymer (PBT) consisting of bithiazole, DTP,
and pendent melamine units was synthesized by Stille polymerization, which can be hydrogern-
bonded (H-bonded) with proper molar amounts of bi-functional π-conjugated cross-linker F (i.e., two uracil motifs covalently attached to a fluorene core through triple bonds symmetrically) to
develop a novel supramolecular polymer network (PBT/F). The effects of multiple H-bonds on
light harvesting capabilities, HOMO levels, and photovoltaic properties of polymer PBT and H-
bonded polymer network PBT/F are investigated. The preliminary results show that the solar cell
device containing 1:1 wt. ratio of PBT/F and PC 71 BM offers the best power conversion
efficiency (PCE) value of 0.86% with a J sc of 4.97 mA/cm 2 , an V oc of 0.55 V, and FF of 31.5%.
Besides, Stille polymerization was employed to synthesize another LBG conjugated main-chain
polymer PBTH consisting of bithiazole, DTP, and pendent melamine derivatives. Novel
supramolecular polymer networks PBTH/C and PBTH/F were developed by mixing proper
molar amounts of polymer PBTH (containing melamine pendants) to be hydrogen-bonded (H-
bonded) with complementary uracil-based conjugated cross-linkers C and F (i.e., containing two
symmetrical uracil moieties connected with carbazole and fluorene units through triple bonds).
The formation of multiple H-bonds between polymer PBTH and cross-linkers C or F was
confirmed by FT-IR measurements. In contrast to polymer PBTH, the supramolecular design
with multiple H-bonds can enhance the photovoltaic properties of PSC devices containing H-
bonded polymer networks PBTH/C and PBTH/F by tuning their light harvesting capabilities,
HOMO energy levels, and crystallinities. The PCE values of PSC devices containing
supramolecular polymer networks PBTH/C and PBTH/F (as polymer:PC 71 BM=1:1 w/w) are
found to be 0.97 and 0.68%, respectively, in contrast to 0.52% for polymer PBTH. The highest
PCE value of 1.56% with J sc value of 7.16 mA/cm 2 , a V oc value of 0.60 V, and a FF of 0.36 was
obtained in the PSC device containing supramolecular polymer networks PBTH/C as
polymer:PC 71 BM=1:2 w/w.
Abstract…………………………………………………………………………...………………..I
摘要…………………………………………………………………………………………..…..III
Acknowledgements.……………..………………….………….………………………………...IV
List of Figures…………………………………………………………………………………….X
List of Tables…………………………………………………………………………………..XIV
Chapter 1…………………………………………………………………………………………..1
1.1 Introduction ………………………………………………………………………………...1
1.2 Solar Cell…………………………………………………………………………………...3
1.3 Bulk-Heterojunction Solar Cells (BHJs)…………………………………………………...5
1.3.1 General Deivce Structures of Bulk-Heterojunction Solar Cells.................................5
1.3.2 Basic Mechanistics Principles of Organic Solar Cells………………………………7
1.4 Determination of Solar Cell Performances………………………………………………...9
1.4.1 Short Circuit Current (I sc ) ……………… ……………………………….........9
1.4.2 Incident Photon-to-Current Conversion Efficiency (IPCE) ……………… ……11
1.4.3 Open Circuit Voltage……………… ………………………………....................11
1.4.4 Fill Factor……………… ………………………………................................12
1.4.5 Oranic photovoltaic Device Architectures……………… ……………………13
1.4.6 Comparison between Organic and Inorganic Solar Cell…………………………...16
1.5 Literature Survey of Organic Solar Cell Materials………………………………………..17
1.5.1 Design Considerations for Low Band Gap Polymers……………… ……………18
1.5.2 Polymer Solar cell Materials…………………………………………………...…..21
1.5.3 Varios Low-Band-Gap polymers for solar cells……………………………...……22
1.5.4 Supramolecular Hydrogen-Bonded Polymers for Organic Solar
Cells…………………………………………………………………………...…………29
1.5.5 Characterization of Active Materials for Polymer Solar Cells.. …………………..31
1.6 Objective and Outline of this Thesis………………………………………………………32
Chapter 2. Synthesis and Applications of 2,7-Carbazole-Based Conjugated Main-Chain
Copolymers Containing Electron Deficient Bithiazole Units for Organic Solar Cells………….36
2.1 Introduction ……………………………………………….................................................32
2.2 Experimental………………………………………………................................................39
2.2.1 Materials……………… ………………………………................................39
2.2.2 Synthesis Measurements and Characterizations……………… ……………39
2.2.3 Device Fabrication and Photovoltaic Measurements of Polymer Solar Cells
(PSCs)… ……………… ……………………...…………………………………….41
2.2.4 Synthesis of Monomers and Polymers ……………………………………………42
2.3 Results and Discussion………….………………………………………………………...46
2.3.1 Syntheses and Characterization………….………………………………………...46
2.3.2 Optical Properties………….………………………………………………………51
2.3.3 Electrochemical Properties………….……………………………………………..54
2.3.4 Photovoltaic Properties………….…………………………………………………56
2.4 Conclusion ………………………………………………………………………………..61
Chapter 3. Fine Tuning of HOMO Energy Levels for Low-Band-Gap Photovoltaic Copolymers
Containing Cyclopentadithienopyrrole and Bithiazole Units ……………………………………62
3.1 Introduction ………….………………………………………………………....................62
3.2 Experimental Part………….………………………………………………………............65
3.2.1 Materials………….………………………………………………………..............65
3.2.2 Measurements and Characterizations………….…………………………………..65
3.2.3 Fabrication of Polymer Solar Cells………….…………………………………….66
3.2.4 Fabrication of Hole- and Electron-Only Devices………….………………………68
3.2.5 Synthesis of Monomers and Polymers………….…………………………………68
3.3 Results and Discussion………….………………………………………………………...74
3.3.1 Syntheses and Characterization ………….………………………………………..74
3.2.1 Optical Properties………….……………………………………………………….78
3.3.2 Electrochemical Properties………….……………………………………………..80
3.3.3 Photovoltaic Cell Properties………….……………………………………………83
3.4 Conclusion………….………………………………………………………......................87
Chapter 4. Synthesis and Applications of a Novel Supramolecular Polymer Network with
Multiple H-bonded Melamine Pendants and Uracil Cross-linkers………………………………88
4.1 Introduction ………….………………………………………………………....................88
4.2 Experimental………….………………………………………………………...................90
4.2.1 Materials………….………………………………………………………..............90
4.2.2 Measurements and Characterizations………….…………………………………..90
4.2.3 Fabrication and Testing of Polymer solar Devices………….……………………..92
4.2.4 Fabrication of Hole-only Devices………….………………………………………93
4.2.4 Synthesis of Monomers and Polymers………….………………………………….94
4.2.5 Preperation of Supramolecular Polymer Networks (PBT/F)……………………...98
4.3 Results and Discussion………….………………………………………………………...99
4.3.1 Synthesis and Structural Characterization………….……………………………...99
4.3.2 Optical Prepoerties………………………………………………………………..103
4.3.3 Electrochemical Properties……………………………………………………….104
4.3.4 Photovoltaic Properties…………………………………………………………...107
4.4 Conclusions………………………………………………………………………………110
Chapter 5. Enhancement of Photovoltaic Properties in Supramolecular Polymer Networks
Featuring a Solar Cell Main-Chain Polymer H-Bonded with Conjugated Cross-Linkers……...112
5.1 Introduction………………………………………………………………………………112
5.2 Experimental……………………………………………………………………………..116
5.2.1 Materials………………………………………………………………………….116
5.2.2 Measurements and Characterizations…………………………………………….116
5.2.3 Fabrication and Testing of Polymer Solar Cells………………………………….117
5.2.4 Synthesis of Monomer M1, Conjugated Cross-Linkers (C and F), and Conjugated
Main-Chain Polymer PBTH……………………………………………………………118
5.2.5 Preperation of Supramolecular Polymer Networks (PBTH/C and PBTH/F)……124
5.3 Results and Discussion…………………………………………………………………..126
5.3.1 Synthesys and Characterization…………………………………………………..126
5.3.2 IR Measurements…………………………………………………………………128
5.3.3 Optical Prepoerties………………………………………………………………..129
5.3.4 Electrochemical Properties……………………………………………………….133
5.3.4 Photovoltaic Properties…………………………………………………………...135
5.4 Conclusion……………………………………………………………………………….139
Chapter 6. Conclusions…………………………………………………………………………140
References………………………………………………………………………………………143
Curriculum Vitae……………………………………………………………………………….155
Publications…………………………………………………………………………………….156
1. Delgado, J. L.; Bouit, P. A.; Filippone, S.; Herranz, M. Ά.; Marťin, N. Chem. Commun.
2010, 46, 4853; (b) For further information about solar energy, see the International Energy
Agency Photovoltaic Power Systems Program at: www.iea-pvps.org.
2. Goswami, D. Y. Advances in Solar Energy: An annual Review of Research and
Development 2003, Vol. 15.
3. Becquerel, A. E. Compt. Rend. Acad. Sci. 1839, 9, 561.
4. Pulfrey, D. L. Photovoltaic Power Generation, Van Nostrand Reinhold, New York 1978.
5. Ohl, R. S.; Silver, L. U.S. Patent 2402662, 1946.
6. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676.
7. Tang, C. W.; Albrecht, A. C. The Journal of Chemical Physics 1975, 62, 2139.
8. Tang, C. W. Applied Physics Letters 1986, 48, 183.
9. (a) Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Prog. Photovolt. Res. Appl. 2010,
18, 346; (b) Service, R. F. Science 2011, 332, 293.
10. Lin, L. Y.; Chen, Y. H.; Huang, Z. H.; Lin, H. W.; Chou, S. H.; Lin, F.; Chen, C. W.; Yi-
Hung Liu, Y. H.; Wong, K. T. J. Am. Chem. Soc. 2011, 133, 15822.
11. Chen, H. Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li. G. Nat
Photonics 2009, 3, 649; (b) Gendron, D.; Leclerc, M. Energy Environ Sci. 2011, 4, 1225.
12. Kietzke, T. Advances in OptoElectronics doi:10.1155/2007/40285, Article ID 40285, 1.
13. Hoppe, H.; Sariciftci, N. S. Advances in Polymer Science 2008, 214, 1.
14. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15.
15. Thompson, B. C.; Fréchet, J. M. J. Angew. Chem. Int. Ed. 2008, 47, 58.
16. Blouin, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007, 19, 2295.
17. Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533.
18. Parker, I. D. J. Appl. Phys. 1994, 75, 1656.
19. Marks, R. N.; Halls, J. J. M.; Bradley, D. D. C.; Friend, R. H.; Homes, A. B. J. Phys.:
Condens. Matter 1994, 6, 1379.
20. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Prog. Photovolt. Res. Appl. 2010, 18,
346.
21. Sariciftci, N. D.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F.
Appl. Phys. Lett. 1993, 62, 585.
22. Pettersson, L. A. A.; Roman, L. S.; Inganas, O. J. Appl. Phys. 1999, 86, 487.
23. Yu, G.; Heeger, A. J. J. Appl. Phys. 1995, 78, 4510.
24. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S.
C.; Holmes, A. B. Nature 1995, 376, 498.
25. Kannan, B.; Castelino, K.; Majumdar, A. Nano Lett. 2003, 3, 1729.
26. Günes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.
27. Mühlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C. J.
Adv. Mater. 2006, 18, 2884.
28. Winder, C.; Sariciftci, N. S. J. Mater. Chem. 2004, 14, 1077.
29. Kitamura, C.; Tanaka, S.; Yamashita, Y., Chem. Mater. 1996, 8, 570.
30. Ajayaghosh, A. Chem. Soc. Rev. 2003, 32, 181.
31. Bundgaard, E.; Krebs, F. C. Sol. Energy Mater. Sol. Cells 2007, 91,954.
32. Mühlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C. J.
Adv. Mater. 2006, 18, 2884.
33. Chen, J. W.; Cao, Y. Acc. Chem. Res. 2009, 42, 1709.
34. Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D.
D. C.; Giles, M.; McCulloch, I.; Ha, C.; Ree, M. Nat. Mater. 2006, 5, 197.
35. Gadisa, A.; Oosterbaan, W. D.; Vandewal, K.; Bolsee, J.C.; Bertho, S.; D'Haen, J.; Lutsen,
L.; Vanderzande, D.; Manca, J. V. Adv. Funct. Mater. 2009, 19, 3300.
36. Lenes, M.; Wetzelaer, G. A. H.; Kooistra, F. B.; Veenstra, S. C.; Hummelen, J. C.; Blom, P.
W. M. Adv. Mater. 2008, 20, 2116.
37. Dennler, G.; Scharber, M.; Brabec, C. J. Adv. Mater. 2009, 21, 1323.
38. Brédas, J. L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Chem. Rev. 2004, 104, 4971.
39. Cai, W.; Gong, X.; Cao, Y. Sol. Energy Mater. Sol. Cells 2007, 94,114.
40. Singh, T. B.; Marjanovic, N.; Matt, G. J.; Günes, S.; Sariciftci, N. S.; Ramil, A. M.;
Andreev, A.; Sitter, H.; Schwödiauer R.; Bauer, S. Org. Electron. 2005, 6, 1199.
41. Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2006, 16, 45.
42. Shaheen, S.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C.
Appl. Phys. Lett. 2001, 78, 841.
43. Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang,Y. Nat. Mater
2005, 4, 86.
44. Zhou, S.; Yang, L.; Stoneking, S.; You , W. ACS Appl. Mater. Intrfaces 2010, 2, 1377;
45. Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletête, M.;
Durocher, G.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732.
46. Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.;
Lee, K.; Heeger, A. J. Nat. Photonics 2009, 3, 297.
47. Gendron, D.; Morin, P. O.; Najari, A.; Leclerc, M. Macromol. Rapid Commun. 2010, 31,
1090.
48. Zhou, E.; Cong, J.; Yamakawa, S.; Wei, Q.; Nakamura, M.; Tajima, K.; Yang, C.;
Hashimoto, K. Macromolecules 2010, 43, 2873.
49. Qin, R.; Li, W.; Li, C.; Du, C.; Veit, C.; Schleiemacher, H. F.; Andersson, M.; Bo, Z.; Liu,
Z.; Inganäs, O.; Wuerfel, U.; Zhang, F. J. Am. Chem. Soc. 2009, 131, 14612.
50. Yi, H.; Johnson, R. G.; Iraqi, A.; Mohamad, D.; Royce, R.; Lidzey, D. G. Macromol. Rapid
Commun. 2008, 29, 1804.
51. Yue, W.; Zhao, Y.; Shao, S.; Tian, H.; Xie, Z.; Geng, Y.; Wang, F. J. Mater Chem. 2009,
19, 2199.
52. Zhou, E.; Nakamura, M.; Nishizawa, T.; Zhang, Y.; Wei, Q.; Tajima, K.; Yang, C.;
Hashimoto, K. Macromolecules 2008, 41, 8302.
53. Zhou, E.; Wei, Q.; Yamakawa, S.; Zhang, Y.; Tajima, K.; Yang, C.; Hashimoto, K.
Macromolecules 2010, 43, 821.
54. Zhou, E.; Wei, Q.; Yamakawa, S.; Zhang, Y.; Tajima, K.; Yang, C.; Hashimoto, K. Chem.
Mater. 2009, 21, 4055.
55. Chen, L.; Deng, D.; Nan, Y.; Shi, M.; Chan, P. K. L.; Chen, H. J. Phy. Chem. C 2011, 115,
11282.
56. Zhou, E.; Cong, J.; Tajima, K.; Hashimoto, K. Chem. Mater. 2010, 22, 4890.
57. Hu, X.; Shi, M.; Zuo, L.; Nan, Y.; Liu, Y.; Fu, L.; Chen, H. Polymer 2011, 52, 2559.
58. Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. Angew. Chem. Int. Ed.
2011, 50, 2995.
59. Price, S. C.; Yang, L.; Zhou, H.; Stuart, A. C.; You, W. J. Am. Chem. Soc. 2011, 133, 4625.
60. Chu, T. Y.; Lu, J.; Beaupré, S.; Zhang, Y.; Pouliot, J. R.; Wakim, S.; Zhou, J.; Leclerc, M.;
Li, Z.; Ding, J.; Tao, Y. J. Am. Chem. Soc. 2011, 133, 4250.
61. Wang, H.; Shi, Q.; Lin, Y.; Fan, H.; Cheng, P.; Zhan, X.; Li, Y.; Zhu, D. Macromolecules
2011, 44, 4213.
62. Yang, M.; Peng, B.; Liu, B.; Zou, Y.; Zhou, K.; He, Y.; Pan, C.; Li, Y. J. Phy. Chem. C
2010, 114, 17989.
63. Lee, J.; Jung, B. J.; Lee, S. K.; Lee, J. I.; Cho, H. J.; Shim, H. K. J. Polym. Sci Part A:
Polym. Chem. 2005, 43, 1845.
64. Zhang, M.; Fan, H.; Guo, X.; He, Y.; Zhang, Z.; Min, J.; Zhang, J.; Zhao, G.; Zhan, X.; Li,
Y. Macromolecules 2010, 43, 5706.
65. Zhang, M.; Fan, H.; Guo, X.; He, Y.; Zhang, Z. G.; Min, J.; Zhang, J.; Zhao, G.; Zhan, X.;
Li, Y. Macromolecules 2010, 43, 8714.
66. Shi, Q.; Fan, H.; Liu, Y.; Chen, J.; Ma, L.; Hu, W.; Shuai, Z.; Li, Y.; Zhan, X.
Macromolecules 2011, 44, 4230.
67. Li, K. C.; Huang, J. H.; Hsu, Y. C.; Huang, P. J.; Chu, C. W.; Lin, J. T.; Ho, K. C.; Wei, K.
H.; Lin, H. C. Macromolecules 2009, 42, 3681.
68. a) Greef, T. F. A. D.; Smulders, M. M. J.; Wolffs, M.; Schenning, A. P. H. J.; Sijbesma, R.
P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687; (b) Lianes-Pallas, A.; Palma, C. -A.; Piot, L.;
Belbakra, A.; Listorti, A.; Prato, D. M.; Samorì, P.; Armaroli, N.; Bonifazi, D. J. Am.
Chem. Soc. 2009, 131, 509; (c) González-Rodrıáguez, D.; Schenning, A. P. H. J. Chem.
Mater. 2011, 23, 310.
69. (a) Bonifazi, D.; Kiebele, A.; Stöhr, M.; Cheng, F.; Jung, T.; Diederich, F.; Spillmann, H.
Adv. Funct. Mater. 2007, 17, 1051; (b) Surin, M.; Samorí, P. Small 2007, 3, 190.
70. Wiesenauer, E. F.; Edwards, J. P.; Scalfani, V. F.; Travis S. Bailey, T. S.; Gin, D. L.
Macromolecules 2011, 44, 5075.
71. (a) Wessendorf, F.; Grimm, B.; Guldi, D. M.; Hirsch, A. J. Am. Chem. Soc. 2010, 132,
10786; (b) Seitz, W.; Jiménez, Á. J.; Carbonell, E.; Grimm, B.; Salomé, M.; -Morgade, R.;
Guldi, D. M.; Torres, T. Chem. Commun.2010, 46, 127.
72. (a) Chen, Y.Y., Tao, Y. T.; Lin, H. C. Macromolecules 2006, 39, 8559; (b) Padhy, H.;
Sahu, D.; Chiang, I. H.; Patra, D.; Kekuda, D.; Chu, C. -W.; Lin, H. -C. J. Mater. Chem.,
2011, 21, 1196; (c) Nair, K. P.; Breedveld, V.; Weck, M. Macromolecules 2011, 44, 3346.
73. (a) Schenning, A. P. H. J.; Herrikhuyzen, J.; Jonkheijm, P.; Chen, Z.; F. Würthner; Meijer,
E. W. J. Am. Chem. Soc. 2002, 124, 10252; (b) Jonkheijm, P.; Stutzmann, N.; Chen, Z.;
Leeuw, D. M.; Meijer, E. W.; Schenning, A. P. H. J.; Würthner, F. J. Am. Chem. Soc. 2006,
128, 9535.
74. (a) El-ghayoury, A.; Schenning, A. P. H. J.; Hal, P. A. V.; Duren, J. K. J. V.; Janssen, R. A.
J.; Meijer, E. W. Angew. Chem. Int. Ed. 2001, 40, 3660; (b) Jonkheijm, P.; Duren, J. K. J.
V; Kemerink, M.; Janssen, R. A. J.; Schenning, A. P. H. J.; Meijer, E.W. Macromolecules
2006, 39, 784.
75. (a) Mazzio, K. A.; Yuan, M.; Okamoto, K.; Luscombe, C. K. ACS Appl. Mater. Interfaces
2011, 3, 271; (b) Loser, S.; Bruns, C. J.; Miyauchi, H.; Ortiz, R. P.; Facchetti, A.; Stupp,
S. I.; Marks, T. J. J. Am. Chem. Soc. 2011, 133, 8142.
76. (a) Liang, T. C.; Chiang, I. H.; Yang, P. J.; Kekuda, D.; Chu, C. W.; Lin, H. C. J. Polym.
Sci. Part A: Polym. Chem. 2009, 47, 5998; (b) Sahu, D.; Padhy, H.; Patra, D.; Kekuda, D.;
Chu, C. W.; Chiang, I. H.; Lin, H. C. Polymer 2010, 51, 6182.
77. Po, R.; Maggini, M.; Camaioni, N. J. Phys. Chem. C 2010, 114, 695.
78. Zhag, S.; Guo, Y.; Fan, H.; Liu, Y.; Chen, H. -Y.; Yang, G.; Zhan, X.; Liu, Y.; Li, Y.;
Yang, Y. J. Polym. Sci Part A: Polym. Chem. 2009, 47, 5498.
79. Zhou, E.; Cong, J.; Tajima, K.; Yang, C.; Hashimoto, K. Macromol Chem Phys 2011, 212,
305.
80. (a) Greef, T. F. A. D.; Smulders, M. M. J.; Wolffs, M.; Schenning, A. P. H. J.; Sijbesma, R.
P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687; (b) González-Rodrıáguez, D.; Schenning, A.
P. H. J. Chem. Mater. 2011, 23, 310.
81. (a) Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868; (b) Bundgaard, E.;
Krebs, F. C. Sol Energy Mater Solar Cells 2007, 91, 954.; (c) Shrotriya, V. Nat. Photonics
2009, 3, 447.
82. (a) Velusami, M.; Huang, J. H.; Hsu, Y. C.; Chou, H. H; Ho, K. C.; Wu, P. L.; Chang, W.
H.; Lin, J. T.; Chu, C. W. Organic Letters 2009, 4898; (b) Huang, J. H.; Velusami, M.; Ho,
K. C.; Lin, J. T.; Chu, C. W. J. Mater. Chem. 2010, 20, 2820.
83. (a) Daun, C.; Cai, W.; Huang, F.; Zhang, J.; Wang, M.; Yang, T.; Zhong, C.; Gong, X.;
Cao, Y. Macromolecules 2010, 43, 5262; (b) Boudreault, P. T.; Michaud, A.; Leclerc, M.
Macromol. Rapid Commun. 2007, 28, 2176.
84. (a) Mühlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec,
C. Adv. Mater. 2006, 18, 2884; (b) Peet, J.;Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.;
Heeger, A. J.; Bazan, G. C. Nat. Mater 2007, 6, 497.
85. (a) Chen, M. H.; Hou, J.; Hong, Z.; Yang, G.; Sista, S.; Chen, L. M.; Yang, Y. Adv. Mater.
2009, 21, 4238; (b) Gadisa, A.; Mammo, W.; Andersson, L. M.; Admassive, S.; Zhang, F.;
Andersson, M. R.; Inganäs, O. Adv. Funct. Mater. 2007, 17, 3836.
86. (a) Tang, W. ; Kietzke, T.; Vemulamada P.; Chen, Z. -K. J. Polym. Sci. Part A: Polym.
Chem. 2007, 4, 5266; (b) Huang, J. H.; Li, K. C.; Wei, H. Y.; Chen, P. Y.; Lin, L.Y.;
Kekuda, D.; Lin, H. C.; Ho, K. C.; Chu, C. W. Organic Electronics 2009, 10, 1109.
87. Blouin, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007, 19, 2295.
88. Wong, W. Y.; Wang, X. Z.; He, Z.; Chen, K. K.; Djurišić, A. B.; Cheung, K. Y.; Yip, C. T.;
Ng, A. M. C.; Xi, Y. Y.; Mak, C. S. K.; Chan, W. K. J. Am. Chem. Soc. 2007, 129, 14372.
89. Wei, Y.; Yang, Y.; Yeh, J. M. Chem. Mater 1996, 8, 2659.
90. (a) Chan, S. H.; Chen, C. P.; Chao, T. C.; Ting, C.; Lin, C. S.; Ko, B. T. Macromolecules
2008, 41, 5519; (b) Jung, I. H.; Yu, J.; Jeong, E.; Kwon, S.; Kong, H.; Lee, K.; Woo, H.Y.;
Shim, H.K. Chem. Eur J. 2010, 16, 3743.
91. (a) Liang, Y.; Wu, Y.; Feng, D.; Tsai, S.T.; Son, H.J.; Li, G.; Yu, L. J. Am. Chem. Soc.
2009, 131, 56; (b) Jung, I. H.; Kim, H.; Park, M, J.; Kim, B.; Park, J, H.; Jeong, E.; Woo, H.
Y.; Yoo, S.; Shim, H. K. J. Polym. Sci Part A: Polym. Chem. 2010, 48, 1423.
92. Baek, N. S.; Hau, S. K.; Yip, H. L.; Acton, O.; Chen, K. S.; Jen, A. K. Y. Chem. Mater.
2008, 20, 5734.
93. (a) Zhou, Y. H.; Wang, Y. N.; Wu, W, C.; Wang, H.; Han, L.; Tian, W.J.; Bassler, H. Sol.
Energy Mater Sol. Cells 2007, 91, 1842; (b) Liu, J.; Shi, Y. J.; Yang, Y. Adv. Funct. Mater.
2001, 11, 420.
94. Li, Y.; Xue, L.; Li, H.; Xu, B.; Wen, S.; Tian, W. Macromolecules 2009, 42, 4491.
95. Liu, J.; Zhang, R.; Osaka, I.; Mishra, S.; Javier, A. E.; Smilgies, D. M.; Kowalewski, T.;
McCullough, R. D. Adv. Funct. Mater. 2009, 19, 3427.
96. Patra, D.; Sahu, D.; Padhy, H.; Kekuda, D.; Chu, C. W.; Lin, H. C. J. Polym. Sci Part A:
Polym. Chem. 2010, 48, 5479.
97. Jung, I. H.; Jung, Y. K.; Lee, J.; Park, J. H.; Woo, H. Y.; Lee, J. -I.; Chu, H. Y.; Shim. H. K.
J. Polym. Sci. Part A: Polym. Chem.2008, 46, 7148.
98. Sahu, D.; Patra, D.; Padhy, H.; Huang, J. H.; Chu, C. W.; Lin, H. C. J. Polym. Sci Part A:
Polym. Chem. 2010, 48, 5812.
99. Zhang, X.; Steckler, T. T.; Dasari, R. R.; Ohira, S.; Potscavage, W. J.; Jr, Tiwari, S. P.;
Coppée, S. Ellinge, S.; Barlow, S.; Brédas, J. -L.; Kippelen, B.; Reynolds, J. R.; Marder, S.
R. J. Mater. Chem. 2010, 20,123.
100. Roncali, J. Chem Rev. 1997, 97, 173.
101. Huo, L.; He, C.; Han, M.; Zhou, E.; Li. Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45,
3861.
102. Price, S. C.; Stuart, A. C.; You, Y. Macromolecules 2010, 43, 4609; (b) Ding, P.; Chu, C.
C.; Liu, B.; Peng, B.; Zou, Y.; He, Y.; Zhou, K.; Hsu, C. S. Macromol. Chem. Phys. 2010,
211, 2555.
103. Hou, J.; Chen, T. L.; Zhang, S.; Chen, H. -Y.; Yang, Y. J. Phys. Chem. C 2009, 113, 1601.
104. Kleinhenz, N.; Yang, L.; Zhou, H.; Price, S. C.; You, W. Macromolecules 2011, 44, 872.
105. Chen, Y. C.; Yu, C. Y.; Fan, Y. L.; Hung, L. I.; Chen, C. P.; Ting, C.; Chem. Commun.
2010, 46, 6503.
106. Li, Y.; Li, Z.; Wang, C.; Li, H.; Lu, H.; Xu, B.; Tian, W. J. Polym. Sci. Part A: Polym.
Chem. 2008, 46, 2765.
107. (a) Piot, L.; Palma, C. A.; Pallas, A. L.; Prato, M.; Szekrényes, Z.; Kamarás, K.; Bonifazi,
D.; Samorì, P. Adv. Funct. Mater. 2009, 19, 1207; (b) Kuo, C. Y.; Su, M. S.; Ku, C. S.;
Wang, S. M.; Lee, H. Y.; Wei, K. H. J. Mater. Chem. 2011, 21, 11605.
108. (a) Delbosc, N.; Reynes, M.; Dautel, O. J.; Wantz, G.; Porte, J. P. L.; Moreau, J. J. E.
Chem. Mater. 2010, 22, 5258; (b) Liu, Y.; Xiao, S.; Li, H.; Liu, H.; Lu, F.; Zhaung, J.; Zhu,
D. J. Phys Chem. B, 2004, 108, 6256.
109. Patra, D.; Sahu, D.; Padhy, H.; Kekuda, D.; Chu, C. W.; Lin, H. C. J. Polym. Sci. Part A:
Polym. Chem. 2010, 48, 5479.
110. Li, Z.; Pei, J.; Li, Y.; Xu, B.; Deng, M.; Liu, Z.; Li, H.; Lu, H.; Li, Q.; Tian, W. J. Phys.
Chem. C 2010, 114, 18270.
111. (a) Padhy, H; Sahu, D.; Patra, D.; Pola. M. K.; Huang, J. H.; Chu, C. W.; Wei, K. H.; Lin,
H. C. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 3417; (b) Padhy, H; Huang, J. H.;
Sahu, D.; Patra, D.; Kekuda, D.; Chu, C. W.; Lin, H. C. J. Polym. Sci. Part A: Polym.
Chem. 2010, 48, 4823.
112. Wu, J. S.; Cheng, Y. J.; Dubosc, M.; Hsieh, C. H.; Chang, C. Y.; Hsu, C. S. Chem.
Commun. 2010, 46, 3259.
113. Zhang, Y.; Hau, S. K.; Yip, H. L.; Sun, Y.; Action, O.; Jen, A. K. Y. Chem. Mater. 2010,
22, 2696.
114. Patra, D.; Sahu, D.; Padhy, H.; Kekuda, D.; Chu, C. W.; Wei, K. H.; Lin, H. C. Macromol.
Chem. Phys. 2011, 212, 1960.
115. (a)Li, Y.; Xu, B.; Li, H.; Cheng, W.; Xue, L.; Chen, F.; Lu, H.; Tian, W. J. Phys. Chem. C
2011, 115, 2386; (b) Li, Y.; Li, Z.; Wang, C.; Li, H.; Lu, H.; Xu, B.; Tian, W. J. Polym. Sci.
Part A: Polym. Chem. 2010, 48, 2765.
116. (a) Shunmugam, R.; Gabriel, G. J.; Amaer, K. A.; Tew, G. N. Macromol. Rapid. Commun.
2010, 31, 784; (b) Yan, P.; Chowdhury, A.; Holman, M. W.; Adams, D. M. J. Phys. Chem.
B 2005, 109, 724. 117. (a) Boudreault, P. L.T.; Najari, A.; Leclerc, M.; Chem. Mater. 2011, 23, 456; (b) Wang, E.;
Wang, M.; Wang, L.; Duan, C.; Zhang, J.; Cai, W.; He, C.; Wu, H.; Cao, Y.
Macromolecules 2009, 42, 4410.
118. Würthner, F.; Chen, Z.; Hoeben, F. J. M.; Peter Osswald, P.; You, C. C.; Jonkheijm, P.;
Herrikhuyzen, J. V.; Schenning, A. P. H. J.; Schoot, P. P. A. M. V. D.; Meijer, E. W.;
Beckers, E. H. A.; Meskers, S. C. J.; Janssen, R. A. J. J. Am. Chem. Soc. 2004, 126,10611.
119. Hoeben, F. J. M.; Zhang, J.; Lee, C. C.; Pouderoijen, M. J.; Wolffs, M.; Würthner, F.;
Schenning, A. P. H. J.; Meijer, E. W.; Feyter, S. D. Chem. Eur. J. 2008, 14, 8579.
120. Yagai, S.; Kubota, S.; Unoike, K.; Karatsu, T.; Kitamura, A. Chem. Commun. 2008, 4466.
121. Khlyabich, P. P.; Burkhart, B.; Ng, C. F.; Thompson, B. C. Macromolecules 2011, 44,
5079.
122. (b) Li, W.; Qin, R.; Yi.; Zhou, Y.; Andersson, M.; Li, F.; Zhang, C.; Li, B.; Liu, Z.; Bo, Z.;
Zhang, F. Polymer 2010, 51, 3031; (c) Inaganäs, O.; Zhang, F.; Andersson, M. R. Acc.
Chem. Res. 2009, 4, 1731.
123. Zhang, J.; Cai, W.; Huang, F.; Wang, E.; Zhong, C.; Liu, S.; Wang, M.; Duan, C.; Yang, T.;
Cao, Y. Macromolecules 2011, 44, 894; (b) Zhao, W.; Kai, W.; Xu, R.; Yang, W.; Gong,
X.; Wu, H.; Cao, Y. Polymer 2010, 51, 3196.
124. Tamilavan, V.; Sakthivel, P.; Li ,Y.; Song, M.; Kim, C. H.; Jin, S. H. J. Polym. Sci. Part A
Polym. Chem. 2010, 48, 3169.
125. (a) Wang, E.; Ma, Z.; Zhang, Z.; Henriksson, P.; Inganäs, O.; Zhang, F.; Andersson, M. R.
Chem. Commun. 2011, 47, 4908; (b) Tamilavan, V.; Song, M.; Jin, S. H.; Hyun, M. H.
Polymer 2011, 52, 2384. 126. Walker, B.; Tamayo, A. B.; Dang, X. D.; Zalar, P.; Seo, J. H.; Garcia, A.; Tantiwiwat, M.
Nguyen, T. Q. Adv. Funct. Mater. 2009, 19, 3063.
127. (a) Guo, X.; Xin, H.; Kim, F.S.; Liyanage, A. D. T.; Jenekhe, S. A.; Watson, M. D.
Macromolecules 2011, 44, 269; (b) Zhang, G.; Fu, Y.; Zhang, Q.; Xie, Z. Polymer 2010,
51, 2313.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊