跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張峻維
研究生(外文):Chun-Wei Chang
論文名稱:碳鋼/鋁合金板之摩擦攪拌搭接研究 - 多銲道
論文名稱(外文):Studies on Friction Stir Lap Welding of Carbon Steel / Aluminum Alloy Plates - Multi-Pass
指導教授:邱源成李榮宗李榮宗引用關係
指導教授(外文):Yuang-Cherng ChiouRong-Tsong Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:73
中文關鍵詞:低碳鋼組合式銲接工具熱電偶鋁合金
外文關鍵詞:thermocouplealuminum alloymild steelassembly-type tool
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:1
本研究使用組合式銲接工具及定深度摩擦攪拌銲接機,進行厚度2 mm低碳鋼板對厚度10 mm鋁合金板之摩擦攪拌搭接銲接實驗。銲接工具係由碳化鎢及低碳鋼組成,亦即直徑20 mm之碳化鎢環中,嵌入直徑10 mm的低碳鋼,兩者共端面。在實驗過程中,使用負荷計與熱電偶,分別量測軸向擠壓力與界面溫升情形,在工具轉速N =1000 rpm,工具下壓深度d =0.3 mm的條件下,探討進給速度對搭接接合界面特性及拉剪強度之影響。熱電偶溫度量測可得知,當鋼板厚度2 mm、鋁合金板厚度10 mm,工具刺入工件表面後,需要持壓至23秒搭接界面處溫度才會達700 ℃,鋁合金熔化並衝破低碳鋼板轉移至工具與鋼板接觸面。鋼板厚度為1 mm時,持壓至12秒,鋁合金就已經熔化,大量轉移至接觸面上。在預熱時間為20秒,進給速度60 mm/min增加至268 mm/min進行搭接實驗。單銲道拉剪試驗結果得知,拉剪強度在進給速度為139 mm/min條件下,可達31 MPa, 188 mm/min下,約20 MPa。然而,在多銲道搭接實驗下,拉剪強度在進給速度為86 mm/min約23 MPa,在139 mm/min下約27 MPa。這些拉剪強度約為鋁合金基材的20 %。
In this study, 2 mm thick mild steel is welded on 10 mm thick aluminum alloy using the friction stir welding machine with an assembly-type tool and a plunge depth of 0.3 mm. The welding tool is made of tungsten carbide with a diameter of 20 mm, and a mild steel rod is embedded within the ring of tungsten carbide, so that they have the same end plane. The load cell and the thermocouple are used to measure the axial load and the temperature rise, respectively. The effect of feeding speed on the faying surface and the maximum failure load is investigated at a tool rotating speed of 1000 rpm. Results show that it takes about 23 seconds after the plunging to achieve 700 °Con the faying surface. In this temperature, an aluminum alloy is melted and breaks through the steel sheet, so that it transfers to the interface between the tool and steel sheet. This phenomenon occurs at the dwell time of 12 seconds for 1 mm thick steel. The effect of feeding speed on the welded quality is established in the single-weld lapping experiments. For the feeding speed from 86 to 268 mm/min with the dwell time of 20 seconds, results show that the shear strength between two sheets can reach at 31 MPa at the feeding speed of 139 mm/min, it is about 20 MPa at the feeding speed of 188 mm/min. However, results for the multi-pass welding experiments show that the shear strength is 23 MPa at the feeding speed of 86 mm/min, and 27 MPa at 139mm/min, which is about 20% that of aluminum alloy.
論文審定書 .................................................................................................................... i
誌謝 ...............................................................................................................................ii
摘要 ..............................................................................................................................iii
Abstract ......................................................................................................................... iv
目錄 ............................................................................................................................... v
圖次 .............................................................................................................................vii
表次 .............................................................................................................................xii
第一章緒論 ................................................................................................................. 1
1.1 研究背景 ............................................................................................................... 1
1.2 文獻回顧 ............................................................................................................... 2
1.2.1 鋁合金銲接 ..................................................................................................... 3
1.2.2 低碳鋼摩擦攪拌銲接 ..................................................................................... 4
1.2.3 異種材料銲接 ................................................................................................. 6
1.3 研究目的 ............................................................................................................... 9
第二章實驗裝置與實驗方法 ................................................................................... 10
2.1 實驗設備 ............................................................................................................. 10
2.2 實驗材料特性與幾何形狀 ................................................................................. 12
2.2.1 實驗工件材料 ............................................................................................... 12
2.2.2組裝型摩擦攪拌熔接工具 ............................................................................ 14
2.3 量測系統 ............................................................................................................. 15
2.3.1 溫度量測 ....................................................................................................... 15
2.3.2 負荷量測 ....................................................................................................... 16
2.4 實驗材料的前處理方式 ..................................................................................... 16
2.4.1 碳鋼工件 ....................................................................................................... 16
2.4.2 鋁合金工件 ................................................................................................... 16
2.4.3 組合式工具 ................................................................................................... 17
2.5 實驗步驟 ............................................................................................................. 18
2.6 銲道剪力破壞試驗 ............................................................................................. 20
2.7 金相觀察試片取樣 ............................................................................................. 22
2.8 實驗流程 ............................................................................................................. 23
第三章實驗結果與討論 ........................................................................................... 24
3.1 預熱時間效應 ..................................................................................................... 24
3.2 單銲道搭接實驗 ................................................................................................. 26
3.2.1銲道外觀與界面觀察 .................................................................................... 32
3.2.2 破斷面之接合面積與接合強度 ................................................................... 34
3.3 多銲道搭接實驗 ................................................................................................. 36
3.3.1 破斷面之接合強度 ....................................................................................... 46
3.3.2 銲道剖面觀察 ............................................................................................... 48
3.4 探討鋼板厚度對摩擦攪拌進給搭接銲接影響 ................................................. 51
第四章結論 ............................................................................................................... 55
4.1 結論 ..................................................................................................................... 55
4.2 未來研究方向 ..................................................................................................... 56
參考文獻..................................................................................................................... 57
[1] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith and C. J. Drawes, Friction stir butt welding, G B Patent Application No. 9125978.8, Dec.1991; S.S. Patent No. 5460317, Oct., 1995.
[2] W. M Thomas, E. D. Nicholas, R. E. Dolby, C.J. Jones and R. H. Lilley, Friction plug extrusion, International Patent PCT / GB92 /01540.21.8.92.
[3] R.S. Mishra and Z.Y. Ma, &;quot;Friction stir welding and processing&;quot;, Materials Science and Engineering R, Vol.50 (2005) 1-78.
[4] M.A. Sutton, B. Yang, A.P. Reynolds and R. Taylor, &;quot;Microstructural studies of friction stir welds in 2024-T3 aluminum&;quot;, Materials Science and Engineering A, Vol.323 (2002) 160-166.
[5] S. Ramasamy, &;quot;Drawn arc stud welding: crossing over from steel to aluminum&;quot;, Welding Journal, Vol.79 (2000) 35-39.
[6] M. Fujimoto, S. Koga, N. Abe, Y. S. Sato and H. Kokawa, &;quot;Microstructural analysis of stir zone of Al alloy produced by friction stir spot welding&;quot;, Science and Technology of Welding and Joining, Vol.13(7) (2008) 663-670.
[7] S. Tarasov, V.E. Rubtsov and E.A. Kolubaev, &;quot;A proposed diffusion-controlled wear mechanism of alloy steel friction stir welding (FSW) tools used on an aluminum alloy&;quot;, Wear, Vol.318 (2014) 130-134.
[8] K. Aota and K. Ikeuchi, &;quot;Development of friction stir spot welding using rotating tool without probe and its application to low-carbon steel plate&;quot;, Welding Internation, Vol.23 (2008) 54-60.
[9] M. Ghosh, K. Kumar and R.S. Mishra, &;quot;Friction stir lap welded advanced high strength steels: Microstructure and mechanical properties&;quot;, Materials Science and Engineering A, Vol.528 (2011) 8111-8119.
[10] M. J. Rathod and M. Kutsuna, &;quot;Joining of aluminum alloy 5052 and Low-Carbon Steel by Laser Roll Welding&;quot;, Welding Journal, (2004) 16-26.
[11] K. Kimapong and T. Watanabe, &;quot;Effect of welding process parameters on mechanical property of FSW lap joint between aluminum alloy and steel&;quot;, Materials Transactions, Vol.46 (2005) 2211-2217.
[12] K. Kimapong and T. Watanabe, &;quot;Lap joint of A5083 aluminum alloy and SS400 steel by friction stir welding&;quot;, Materials Transactions, Vol.46 (2005) 835-841.
[13] W.B. Lee, M.Schmuecker, U. A. Mercardo, G. Biallasb and S.B. Jung, &;quot;Interfacial reaction in steel–aluminum joints made by friction stir welding&;quot;, Scripta Materialia, Vol.55 (2006) 355-358.
[14] G. Zhang, W. Su, J. Zhang and Z. Wei, &;quot;Friction stir brazing : a novel process for fabricating Al/Steel layered composite and for dissimilar joining of Al to steel&;quot;, Metallurgical and Materials Transactions A, Vol.42A (2011) 2850-2862.
[15] R.S. Coelho, A.Kostka, J.F.dosSantos and A.Kaysser-Pyzalla, &;quot;Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure&;quot;, Materials Science &; Engineering A, Vol.556 (2012) 175-183.
[16] M. Dehghani, A.Amadeh and S.A.A.Akbari Mousavi, &;quot;Investigations on the effects offriction stir welding parameters on intermetallic and defect formation in joining aluminum alloy tomild steel&;quot;, Materials and Design, Vol.49 (2013) 433-441.
[17] 吳俊賢, &;quot;使用組合式碳化鎢工具探討碳鋼對鋁合金之摩擦攪拌搭接之研究&;quot;, 中山大學機械與機電工程研究所碩士論文,(民國102年).
[18] 邱源成, 李榮宗, 謝銘哲and 劉鑑德, 組裝型摩擦攪拌熔接工具, 中華民國發明專利申請第101104567號.
[19] L.B. Johannes and R.S. Mishra, &;quot;Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum&;quot;, Materials Science and Engineering A,
Vol.464(2007) 255-260.
[20] S.J. Kim, C.G. Lee, H.N. Han, S.H. Kang and K.H. Oh, &;quot;Surface friction welding of thin metal sheets&;quot;,Key Engineering Materials, Vol.345-346(2007)1477-1480.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top