|
In this thesis, we use the knowledge about the sorts of items and transactions to discover association rules among items in a market transaction database. It is natural to divide items into sorts: milk and bread belong to the sort of food while gloves and hats pertain to the sort of clothing. We sort each transaction according to the sorts of items contained by this transaction. Then each sort of transactions will form a subset of the entire database. To discover the association rules within and between these subsets, two kinds of support-constraint models with the corresponding algorithms are proposed. We claim that such models not only enrich the semantics of rules compared with the inceptive work but also emphasize the customer buying patterns for both intra-sort and inter-sort merchandise. The constraint needed when generating rules based on sorts of items is also discussed. The experiments evaluate the performance of these algorithms on synthetical databases of different inter- sort patterns.
|