跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 03:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉修銘
研究生(外文):Hsiu-Ming Yeh
論文名稱:可應用於感測網路及射頻晶片之新式智慧型溫度感測器
論文名稱(外文):A New CMOS Smart Temperature Sensor for Sensor Network / RFID Applications
指導教授:吳紹懋
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:60
中文關鍵詞:溫度感測器零溫度係數類比至數位轉換器
外文關鍵詞:temperature sensorZTCADC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文提出可應用於感測網路及射頻晶片之新式智慧型溫度感測器。此次提出的溫度感測器在使用溫度補償之電流源以及一增益級使得二極體連接形式的電晶體作為感測裝置以達成高線性以及高輸出範圍。原感測電路以及一十位元雙斜率類比至數位轉換器皆設計為符合3.3伏特電壓源以及TSMC 0.35μm CMOS 2P4M標準製程。當溫度從0°C變化至100°C,輸出電壓則以3.3 mV/°C的變化率從1.32伏特變化至1.65伏特。而線性偏差則介於-0.3 %和0.16%之間。主要溫度感測器的功率消耗為40.8μW。
In this thesis, a new CMOS Smart temperature sensor which can be applied to sensor networks or RFID is presented. The proposed temperature sensor employs a diode-connected MOS ttransistor as the sensor device while using a simple temperature- compensated bias-current stage and an amplifier stage to achieve high linearity and high output swing. The prototype circuit with a 10-bit dual-slope ADC is designed from a supply of 3.3V in the TSMC 0.35μm CMOS 2P4M standard process. When the temperature rises from 0°C to 100°C, the output voltage swings from 1.32~1.65V. The linearity deviation is between -0.3 % and 0.16% with a gain of 3.3 mV/°C; the power consumption is about 40.8μW for core temperature sensor.
Chinese Abstract I
English Abstract II
Acknowledgements III
List of Contents IV
List of Figures VI
List of Tables IX

Chapter 1 1
Introduction 1
1.1 Motivation 1
1.3 The Introduction of the CMOS Temperature Sensor 5
1.4 Several Types of I.C. Temperature Sensor 6
1.5 Thesis Organization 9
Chapter 2 11
The Design of the Proposed Temperature Sensor 11
2.1 Zero Temperature Coefficients 12
2.2 Current Source with Temperature Compensation 13
2.3 Topology of the Proposed Temperature Sensor 16
Chapter 3 27
3.1 The Comparison of ADCs 27
3.2 Single-Slope Integrated Dual Slope ADC 28
3.3 Dual-Slope Integrated Dual Slope ADC 30
3.4 Simulation of ADC 33
Chapter 4 42
Measurement 42
4.1 The Test Plan of a Temperature Sensor 42
4.2 The Measurement Results of the Temperature Sensor 47
4.3 The Measurement Results of Integrated ADC 51
Chapter 5 56
Conclusion and Future Work 56
5.1 Conclusion 56
5.2 Future Work 57
Reference 59
[1]http://140.138.138.110 Optimal Design Laboratory of Yuan Ze University
[2]http://bmeftp.niu.edu.tw/biotech/flower Environmental sensor and setup, Department of Biomechatronic Engineering of National Ilan University
[3]Anton Bakker, ”CMOS Smart Temperature Sensor – An Overview,” Proc IEEE Sensor, vol. 2. Jun. 2002, pp. 1423-1427.
[4]M. Pertijs, A. Niederkorn, M. Xu, B. McKillop, A. Bakker, and J. H. Huijsing, “A CMOS Smart Temperature Sensor With a 3σ Inaccuracy of 0.5 C From 50 C to 120 C,” in IEEE ISSCC Dig. Tech. Papers, vol. 1, Feb. 2003, pp. 200–201.
[5]Poki Chen, Chun-chi Chen, Chin-Chung Tsai, and Wen-Fu Lu, “A Time-to-Digital-Converter-Based CMOS Temperature Sensor,” IEEE J. Solid-State Circuit, vol. 40, NO. 8, Aug 2005.
[6]M. Tuthill, “A switched-current, switched-capacitor temperature sensor in 0.6-um CMOS,” IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 1117–1122, Jul. 1998.
[7]I. M. Filanovsky, Su Tam Lim, “Temperature Sensor Applications of Diode-Connected MOS Transistors,” Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on, Vol. 2, pp. 149-152, May 2002.
[8]I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 7, pp. 876–884, Jul. 2001.
[9]Franco Fiori, and Paolo Stefano Crovetti, “A New Compact Temperature-Compensated CMOS Current Reference,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, Vol. 52, NO. 11, Nov 2005.
[10]TSMC0.35μm2P4M process technology file.
[11]Steven J. Leon, Linear Algebra with Application, Prenitice Hall, Upper Saddle River, NJ 07458.
[12]Sau-Mou Wu, 95S187 CMOS A/D and D/A Design and testing, Hanout, Sept. 2006.
[13]V. Szkkely, M. Rencz and B. Courtois, “Integrating On-chip Temperature Sensors into DfT Schemes and BIST Architectures,” VLSI Test Symposium, 1997., 15th IEEE pp. 440-445 May 1997.
[14]A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 933–937, Jul. 1996.
[15]Fatih Kocer and Michael P. Flyynn, “An RF-Powered, Wireless CMOS Temperature Sensor,” IEEE Sensor Journal, vol.6 No.3. June 2006.
[16]Yiming Zhai, Somashekar B. Prakash, Marc H. Cohen, Pamela A. Abshire, “Detection of On-Chip Temperature Gradient Using a 1.5V Low Power CMOS Temperature Sensor,” IEEE ISCAS 2006.
[17]Anton Baker and Johen H. Huijsing, “Micropower CMOS Temperature Sensor with Digital Output,” IEEE Journal of Solid-State Circuits, vol.31. No.7. July 1996.
[18]Anton Bakker and Johen K. Kuijsing, “A Low-Cost High-Accuracy CMOS Smart Temperature Sensor,” Solid-State Circuits Coference, 1999. ESSCIRC ’99. Proceeding of 25th European, pp. 302-305, Sept. 1999.
[19]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, 2001.
[20]Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, OXFORD, New York, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top