|
[1] Ultra-Wide-Band (UWB) First Report and Order,:Federal Communications Commission(FCC), Feb. 2002. [Online]. Available: http://hraunfoss.gov/edocs_ public/attachmatch/FCC-02-48A1.pdf. [2] S. Stroh, ”Ultra-wideband: multimedia unplugged,” IEEE Spectrum, vol. 40, no. 9, pp. 23-27, Sept. 2003. [3] (2003) IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a). [Online]. Available: http://www.ieee802.org/15/pub/TG3a.html. [4] E. R. Green and S. Roy, ”System architectures for high-rate ultra-wideband communication systems: A review of recent developments,” Intel Labs, pp.1-11, 2004. [5] http://www.ieee802.org/15/pub/TG3a.html,Meger2-proposal-dc-UWB-update.doc. [6] http://www.ieee802.org/15/pub/TG3a.html,Multi-band-CFP-document.doc. [7] B. Razavi, H. C. Kang, C. C. Hsu, and C. C. Lee, “Multiband UWB transceivers,” in Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 140–147, San Jose, Calif, USA, September 2005. [8] Chih-Fan Liao and Shen-Iuan Liu, “A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receiver,” in Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 161 – 164, 18-21, Sept. 2005. [9] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Noise canceling in wideband CMOS LNAs,” in IEEE ISSCC Dig. Tech. Papers, pp. 406–407, Feb. 2002. [10] F. Bruccoleri, E. A. M. Klumperink, “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275–282, Feb. 2004. [11] H. Knapp, D. Zoschg, T. Meister, K. Aufinger, S. Boguth, and L. Treitinger,“15 GHz wideband amplifier with 2.8 dB noise figure in SiGe bipolar technology,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., pp. 287–290, Jun. 2003. [12] S. Andersson, C. Svensson, and O. Drugge, “Wideband LNA for a multistandard wireless receiver in 0.18μm process,” in Proc. Eur. Solid-State Circuits Conf. (ESSCIRC), pp. 655–658, Sep. 2003. [13] R. Gharpurey, “A broadband low-noise front-end amplifier for ultra wideband in 0.13m CMOS,” in Proc. IEEE Custom Integrated Circuits Conf., pp. 605–608, Oct. 2004. [14] S. S. Mohan, M. D. M. Hershenson, S. P. Boyd, and T. H. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 346–355, Mar. 2000. [15] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 1st ed. New York: Cambridge Univ. Press, 1998. [16] S. Galal and B. Razavi, “40 Gb/s amplifier and ESD protection circuit in 0.18m CMOS technology,” in IEEE ISSCC Dig. Tech. Papers, pp. 480–481, Feb.2004. [17] R.-C. Liu, C.-S. Lin, K.-L. Deng, and H. Wang, “A 0.5–14-GHz10.6-dB CMOS cascode distributed amplifier,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 139–140, Jun. 2003. [18] F. Zhang and P. Kinget, “Low power programmable-gain CMOS distributed LNA for ultra-wideband applications,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 78–81, Jun. 2005. [19] A. Bevilacqua and A. M. Niknejad, “An ultra-wideband CMOS LNAfor 3.1 to 10.6 GHz wireless receivers,” in IEEE ISSCC Dig. Tech. Papers, pp. 382–383, Feb. 2004. [20] C.-W. Kim, M.-S. Kang, P. T. Anh, H.-T. Kim, and S.-G. Lee, “An ultra-wideband CMOS low noise amplifier for 3–5-GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544–547, Feb. 2005. [21] S. Chehrazi, A. Mirzaei, R. Bagheri, and A. A. Abidi, “A6.5 GHz wideband CMOS low noise amplifier for multi-band use,” in Proc. IEEE Custom Integrated Circuits Conf., pp. 801–804, Sep. 2005.
|