跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 13:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱儲
研究生(外文):CHIU, CHU
論文名稱:三維結構觸媒輔助電漿重組產氫之研究
論文名稱(外文):Three-Dimensional Structured Catalysts Assisted Plasma Reforming for Hydrogen Production
指導教授:邱國峰邱國峰引用關係呂晃志
指導教授(外文):CHIU, KUO-FENGLEU, HOANG-JYH
口試委員:邱國峰柯澤豪呂晃志
口試委員(外文):CHIU, KUO-FENGKO, TSE-HAOLEU, HOANG-JYH
口試日期:2017-06-14
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:99
中文關鍵詞:低溫電漿重組產氫系統射頻電源三維結構觸媒
外文關鍵詞:low temperature plasma reforming systemradio frequencythree-dimensional structured catalysts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以丙烷作為低溫電漿重組產氫氣的原料,探討不同射頻電源輸出功率、N2/LPG進氣比例等參數對丙烷轉換率(〖Conv.〗_(〖C_3 H〗_8 ))及氫氣生成體積百分比(V_(H_2 )%)之影響。利用氮氣電漿之高能量電子打斷丙烷之鍵結,經實驗顯示,使用導電碳布(Conductive carbon cloth)作為觸媒情況下,RF輸入功率150 W、N2/LPG=3/27時為最佳參數,丙烷轉換率達70%且氫氣產率45%,並針對此電漿環境做溫度量測,電漿環境溫度為125℃。為改善於重組反應中常因殘碳導致觸媒失活的現象,進一步利用發泡鎳(Nickel foam)及鋼絲絨(Stainless steel wool)等三維結構材料作為觸媒,添加鋼絲絨於3.5 h之長時間電漿重組反應,丙烷轉換率皆穩定維持於70%以上,氫氣生成體積百分比也維持於45%左右,實驗結果顯示,利用三維結構觸媒可增加重組反應之穩定性,減少殘碳對重組反應之影響,且於3.5小時之穩定性測試中,電漿環境溫度維持於150℃左右,相較於傳統高溫裂解及蒸汽重組法生成氫氣,本系統為低溫產氫製程。
Propane reforming has been carried out by low temperature radio frequency (RF) plasma. The plasma was composed of mixture gas with different N2/LPG flow ratios. In order to obtain optimal condition, several parameters, including RF powers and ratio of N2/LPG flow rates were tested to achieve the maximal yield of hydrogen and conversion of propane. The results indicate that 150 W of RF power under N2/LPG flow rate of 3/27 showed 70% methane conversion rate and 45% hydrogen production yield with conductive carbon cloth as a catalyst. Temperature measuring of radio frequency plasma environment which indicates 125oC with 150 W. Adding three-dimensional structured catalysts assisted plasma reforming can enhance reforming stability. The long term reforming experiment confirmed that the steel wool could maintain the propane conversion about 70% and the hydrogen production yield was maintained more than 45%. The results show that adding three-dimensional structured catalysts assisted plasma reforming can reduce the impact of residual carbon.
摘要 II
Abstract III
總目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1前言 1
1-2研究動機 3
第二章 文獻回顧 5
2-1 氫能源 5
2-1-1 氫能源簡介 5
2-1-2 氫氣生產技術 7
2-2 電漿技術簡介 11
2-2-1 電漿基本原理 11
2-2-2 應用於重組反應之電漿類型 18
2-3 低碳烴類重組 24
2-3-1電漿裂解甲烷產氫 24
2-3-2電漿裂解丙烷產氫 25
2-3-3觸媒輔助電漿重組產氫 28
2-3-4 三維結構觸媒 30
第三章 實驗方法 32
3-1 實驗設計與方法 32
3-1-1 實驗材料 32
3-1-2 實驗設備 33
3-1-3 實驗流程 34
3-2 電漿重組反應 37
3-2-1 丙烷電漿重組反應 37
3-2-2三維結構觸媒輔助電漿重組反應 38
3-2-3 實驗參數代碼 40
3-3 分析儀器 41
3-3-1 氣相層析儀(GC-TCD) 41
3-3-2 電漿重組系統之環境溫度量測 44
3-3-3 冷場發射式掃描電子顯微鏡(FESEM) 45
3-3-4高解析比表面積分析儀(BET) 46
3-4-5介面接觸阻抗量測(ICR) 54
3-3-6拉曼光譜儀(Raman) 55
第四章 結果與討論 58
4-1 丙烷電漿重組 58
4-1-1 N2/LPG進氣比例 59
4-1-2射頻功率 62
4-1-3 N2/LPG總進氣量 65
4-1-4丙烷電漿環境溫度量測 66
4-1-5殘碳分析 67
4-2三維結構觸媒之材料分析 69
4-2-1 冷場發射式電子顯微鏡 69
4-2-2 拉曼光譜 70
4-2-3高解析比表面積及孔徑分析 72
4-2-4介面接觸阻抗量測 74
4-3三維結構觸媒輔助電漿重組 75
4-3-1 觸媒對電漿重組之影響 75
4-3-2 電漿環境溫度量測 78
4-3-3穩定性測試 80
4-3-4 殘碳分析 83
結論 86
參考文獻 87

1.交通部統計查詢網, 機動車輛登記數.
2.K. Takeo, The hydrogen revolution: Game-changing developments loom for global energy supply. (2015).
3.M. Matsuka, K.S., T. Ishihara,, Comparative study of propane steam reforming in vanadium based catalytic membrane reactor with nickel-based catalysts. International journal o f hydrogen energy, (2014). 39: p. 14792-14799.
4.Z. C. Y. Qi, Z.Z., Steam reforming of methane over Ni catalysts prepared from hydrotalcite-type precursors: Catalytic activity and reaction kinetics. Chinese journal of chemical engineering, (2015). 23: p. 76-85.
5.H. Ma, R.Z., S. Huang, W. Chen, Q. Shi, , Ni/Y2O3-Al2O3 catalysts for hydrogen production from steam reforming of ethanol at low temperature. Journal of rare earths, (2012). 30: p. 683-690.
6.Y. H. Yun, S.C.L., J. T. Jang, K. J. Yoon, J. W. Bae, G. Y. Han, Thermo-catalytic decomposition of propane over carbon black in a fluidized bed for hydrogen production. International journal o f hydrogen energy, (2014). 39: p. 14800-14807.
7.J. Zhang, L.J., X. He, S. Liu H. Hu,, Catalytic methane decomposition over activated carbons prepared from direct coal liquefaction residue by KOH activation with addition of SiO2 or SBA-15. International journal of hydrogen energy, (2011). 36: p. 8978-8984.
8.J. L. Pinilla, R.U., M. J. Lázaro, R. Moliner, I. Suelves, A. B. García,, Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor. Fuel processing technology, (2011). 92: p. 1480-1488.
9.K. Katayama, S.F., and M. Nishikawa,, Direct decomposition of methane using helium RF plasma. Fusion Engineering and Design, (2010). 85: p. 1381-1385.
10.A. E. E. Putra , S.N., S. Mukasa, H. Toyota, , Hydrogen production by radio frequency plasma stimulation in methane hydrate at atmospheric pressure. International Journal of Hydrogen Energy, (2012). 37: p. 16000-16005.
11.S. A. Nair, T.N., K. Okazaki,, Methane oxidative conversion pathways in a dielectric barrier discharge reactor—Investigation of gas phase mechanism. Chemical Engineering Journal, (2007). 132: p. 85-95.
12.Q. Wang, H.S., B. Yan, Y. Jin, Y. Cheng,, Steam enhanced carbon dioxide reforming of methane in DBD plasma reactor. International Journal of Hydrogen Energy, (2011). 36: p. 8301-8306.
13.Y. Yang, Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Experimental Study. Plasma Chemistry and Plasma Processing, (2003). 3: p. 283-296.
14.F. Ouni, A.K., J. M. Cormier,, Syngas production from propane using atmospheric non-thermal plasma. Plasma chemistry and plasma processing, (2009). 29: p. 119-130.
15.Q. Yu, M.K., T. Liu, J. Fei, X. Zheng, , Non-thermal plasma assisted CO2 reforming of propane over Ni/γ-Al2O3 catalyst. Catalysis communications, (2011). 12: p. 1318-1322.
16.C. Tsai, K.C., Production of hydrogen and nano carbon powders from direct plasmalysis of methane. International Journal of Hydrogen Energy, (2009). 34: p. 833-838.
17.M. Jasiński, M.D., and J. Mizeraczyk,, Production of hydrogen via methane reforming using atmospheric pressure microwave plasma. Journal of Power Sources. 181: p. 41-45.
18.福島生活科技有限公司, 高壓氧學的基礎.
19.J. Wang, W.W., Kinetic models for fermentative hydrogen production: A review. International journal of hydrogen energy, (2009). 34: p. 3313-3323.
20.毛宗強, 氫能-21世紀的綠色能源. (2008).
21.何無忌, 2014年能源產業技術白皮書. 經濟部能源局, (2014).
22.葉哲良, 真空技術與應用. 國家實驗研究院儀器科技研究中心, (2001).
23.簡淑梅、何主亮、陳克昌, 電漿診斷法之原理及其在薄膜與表面工程的應用. 金屬熱處理, (1999). 61: p. 39-53.
24.U. Kogelschatz, B.E., W. Egli, , From ozone generators to flat television screens : history and future potential of dielectric-barrier discharge. Pure Appl. Chem, (1999). 71: p. 1819-1829.
25.M. J. Gallagher, A.F., Plasma Reforming for H2-Rich Synthesis Gas. Fuel cells: technologies for fuel processing, (2011). 8: p. 223-259.
26.S. Ravasio, C.C., Analysis of reactivity and energy efficiency of methane conversion through non thermal plasmas. Chemical engineering science, (2012). 84: p. 580-590.
27.J. Yuan, X.Z., S. Tan,, Methane conversion in the presence of oxygen under low-temperature radio frequency plasma. Journal of natural gas chemistry, (2010). 19: p. 605-610.
28.Q. Wang, B.H.Y., Y. Jin, Y. Cheng,, Investigation of dry reforming of methane in a dielectric barrier discharge reactor. Plasma chemistry and plasma processing, 2009. 29: p. 217-228.
29.H. Taghvaei, A.J., M. R. Rahimpour, M. M. Shirazi, N. Hooshmand,, Hydrogen production through plasma cracking of hydrocarbons: Effect of carrier gas and hydrocarbon type. Chemical engineering journal, (2013). 226: p. 384-392.
30.A. Indarto, J.C., H. Lee, H. Song,, Effect of additive gases on methane conversion using gliding arc discharge. Energy, (2006). 31: p. 2986-2995.
31.N. Rueangjitt, T.S., S. Chavadej, H. Sekiguchi,, Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: Effects of input power, reactor thickness, and catalyst existence,. Chemical engineering journal, (2009). 155: p. 874-880.
32.I. Aleknaviciute, T.G.K., M. W. Collins, C. Xanthos,, Methane decomposition under a corona discharge to generate COx-free hydrogen. Energy, (2013). 59: p. 432-439.
33.J. Gross, 2 Principles of ionization and ion dissociation. Mass spectrometry, (2011): p. 26.
34.J. Ma, B.S., G. Wen, Q. Ren, Y. Yang, Q. Yang, H. Xing, Kinetic modeling and experimental validation of the pyrolysis of propane in hydrogen plasma. International journal o f hydrogen energy, (2016). 41: p. 22689-22697.
35.X. Zheng, S.T., L. Dong, S. Li, H. Chen,, Silica-coated LaNiO3 nanoparticles for non-thermal plasma assisted dry reforming of methane: Experimental and kinetic studies. Chemical engineering journal, (2015). 265: p. 147-156.
36.H. Lee, D.H.L., Y. H. Song, W. C. Choi, Y. K. Park, D. H. Kim,, Synergistic effect of non-thermal plasma–catalysis hybrid system on methane complete oxidation over Pd-based catalysts. Chemical engineering journal, (2015). 259: p. 761-770.
37.D. Shekhawat, Nonconventional Reforming Methods. (2011): p. 261-283.
38.G. Dieckmann, Development of Ni-based sulfur resistant catalyst for diesel reforming. Office of fossil energy fuel cell program, (2006): p. 1-32.
39.A. Ovenston, J.R.W., Generation of heat in a single catalyst pellet placed in an electromagnetic field for endothermic reforming of hydrocarbons. Journal of the chemical society, faraday transactions 1: Physical chemistry in condensed phases

(1983). 79: p. 1073-1084.
40.N. H. Elsayed, N.R.M.R., B. Joseph, J. N. Kuhn,, Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts. Applied catalysis b: environmental, (2015). 179: p. 213-219.
41.B. Fidalgo, J.Á.M., Carbon materials as catalysts for decomposition and CO2 reforming of methane: a review. Chinese journal of catalysis, (2011). 32: p. 207-216.
42.V. Yu. Bychkov, Y.P.T.y., V. N. Korchak,, The mechanism of methane reforming with carbon dioxide: comparison of supported Pt and Ni catalysts. Kinetics and catalysis, (2003). 44: p. 353-359.
43.D. A. Skoog, F.J.H., T. A. Nieman, , Principles of instrumental analysis. (2003).
44.蔡蘊明, 氣象層析儀簡介. (1999).
45.K. S. W. Sing, S.J.G., Adsorption, Surface area and porosity. (1982): p. 283.
46.K. S. W. Sing, Pure and appl. chem and colorist. (1976): p. 8,69.
47.A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,. Solid State Communications, (2007). 143: p. 47-57.
48.L. M. Malard, M.A.P., G. Dresselhaus, M. S. Dresselhaus,, Raman spectroscopy in graphene. Physics reports, (2009). 473: p. 51-87.
49.A. Tamosiunas, P.V., V. Valincius, V. Grigaitiene, Production of synthesis gas from propane using thermal water vapor plasma. International journal o f hydrogen energy, (2014). 39: p. 2078-2086.
50.G. G. Park, T.H.Y., Y. G. Yoon, W. Y. Lee, C. S. Kim,, Pore size e'ect of the DMFC catalyst supported on porous materials. International journal of hydrogen energy, (2003). 28: p. 645-650.
51.D. Song, J.L., Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. Journal of molecular catalysis a: chemical, (2006). 247: p. 206-212.
52.J. R. Rostrup-Nielsen, Industrial relevance of coking. Catalysis today, (1997). 37: p. 225-232.


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top