|
1.交通部統計查詢網, 機動車輛登記數. 2.K. Takeo, The hydrogen revolution: Game-changing developments loom for global energy supply. (2015). 3.M. Matsuka, K.S., T. Ishihara,, Comparative study of propane steam reforming in vanadium based catalytic membrane reactor with nickel-based catalysts. International journal o f hydrogen energy, (2014). 39: p. 14792-14799. 4.Z. C. Y. Qi, Z.Z., Steam reforming of methane over Ni catalysts prepared from hydrotalcite-type precursors: Catalytic activity and reaction kinetics. Chinese journal of chemical engineering, (2015). 23: p. 76-85. 5.H. Ma, R.Z., S. Huang, W. Chen, Q. Shi, , Ni/Y2O3-Al2O3 catalysts for hydrogen production from steam reforming of ethanol at low temperature. Journal of rare earths, (2012). 30: p. 683-690. 6.Y. H. Yun, S.C.L., J. T. Jang, K. J. Yoon, J. W. Bae, G. Y. Han, Thermo-catalytic decomposition of propane over carbon black in a fluidized bed for hydrogen production. International journal o f hydrogen energy, (2014). 39: p. 14800-14807. 7.J. Zhang, L.J., X. He, S. Liu H. Hu,, Catalytic methane decomposition over activated carbons prepared from direct coal liquefaction residue by KOH activation with addition of SiO2 or SBA-15. International journal of hydrogen energy, (2011). 36: p. 8978-8984. 8.J. L. Pinilla, R.U., M. J. Lázaro, R. Moliner, I. Suelves, A. B. García,, Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor. Fuel processing technology, (2011). 92: p. 1480-1488. 9.K. Katayama, S.F., and M. Nishikawa,, Direct decomposition of methane using helium RF plasma. Fusion Engineering and Design, (2010). 85: p. 1381-1385. 10.A. E. E. Putra , S.N., S. Mukasa, H. Toyota, , Hydrogen production by radio frequency plasma stimulation in methane hydrate at atmospheric pressure. International Journal of Hydrogen Energy, (2012). 37: p. 16000-16005. 11.S. A. Nair, T.N., K. Okazaki,, Methane oxidative conversion pathways in a dielectric barrier discharge reactor—Investigation of gas phase mechanism. Chemical Engineering Journal, (2007). 132: p. 85-95. 12.Q. Wang, H.S., B. Yan, Y. Jin, Y. Cheng,, Steam enhanced carbon dioxide reforming of methane in DBD plasma reactor. International Journal of Hydrogen Energy, (2011). 36: p. 8301-8306. 13.Y. Yang, Direct Non-oxidative Methane Conversion by Non-thermal Plasma: Experimental Study. Plasma Chemistry and Plasma Processing, (2003). 3: p. 283-296. 14.F. Ouni, A.K., J. M. Cormier,, Syngas production from propane using atmospheric non-thermal plasma. Plasma chemistry and plasma processing, (2009). 29: p. 119-130. 15.Q. Yu, M.K., T. Liu, J. Fei, X. Zheng, , Non-thermal plasma assisted CO2 reforming of propane over Ni/γ-Al2O3 catalyst. Catalysis communications, (2011). 12: p. 1318-1322. 16.C. Tsai, K.C., Production of hydrogen and nano carbon powders from direct plasmalysis of methane. International Journal of Hydrogen Energy, (2009). 34: p. 833-838. 17.M. Jasiński, M.D., and J. Mizeraczyk,, Production of hydrogen via methane reforming using atmospheric pressure microwave plasma. Journal of Power Sources. 181: p. 41-45. 18.福島生活科技有限公司, 高壓氧學的基礎. 19.J. Wang, W.W., Kinetic models for fermentative hydrogen production: A review. International journal of hydrogen energy, (2009). 34: p. 3313-3323. 20.毛宗強, 氫能-21世紀的綠色能源. (2008). 21.何無忌, 2014年能源產業技術白皮書. 經濟部能源局, (2014). 22.葉哲良, 真空技術與應用. 國家實驗研究院儀器科技研究中心, (2001). 23.簡淑梅、何主亮、陳克昌, 電漿診斷法之原理及其在薄膜與表面工程的應用. 金屬熱處理, (1999). 61: p. 39-53. 24.U. Kogelschatz, B.E., W. Egli, , From ozone generators to flat television screens : history and future potential of dielectric-barrier discharge. Pure Appl. Chem, (1999). 71: p. 1819-1829. 25.M. J. Gallagher, A.F., Plasma Reforming for H2-Rich Synthesis Gas. Fuel cells: technologies for fuel processing, (2011). 8: p. 223-259. 26.S. Ravasio, C.C., Analysis of reactivity and energy efficiency of methane conversion through non thermal plasmas. Chemical engineering science, (2012). 84: p. 580-590. 27.J. Yuan, X.Z., S. Tan,, Methane conversion in the presence of oxygen under low-temperature radio frequency plasma. Journal of natural gas chemistry, (2010). 19: p. 605-610. 28.Q. Wang, B.H.Y., Y. Jin, Y. Cheng,, Investigation of dry reforming of methane in a dielectric barrier discharge reactor. Plasma chemistry and plasma processing, 2009. 29: p. 217-228. 29.H. Taghvaei, A.J., M. R. Rahimpour, M. M. Shirazi, N. Hooshmand,, Hydrogen production through plasma cracking of hydrocarbons: Effect of carrier gas and hydrocarbon type. Chemical engineering journal, (2013). 226: p. 384-392. 30.A. Indarto, J.C., H. Lee, H. Song,, Effect of additive gases on methane conversion using gliding arc discharge. Energy, (2006). 31: p. 2986-2995. 31.N. Rueangjitt, T.S., S. Chavadej, H. Sekiguchi,, Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: Effects of input power, reactor thickness, and catalyst existence,. Chemical engineering journal, (2009). 155: p. 874-880. 32.I. Aleknaviciute, T.G.K., M. W. Collins, C. Xanthos,, Methane decomposition under a corona discharge to generate COx-free hydrogen. Energy, (2013). 59: p. 432-439. 33.J. Gross, 2 Principles of ionization and ion dissociation. Mass spectrometry, (2011): p. 26. 34.J. Ma, B.S., G. Wen, Q. Ren, Y. Yang, Q. Yang, H. Xing, Kinetic modeling and experimental validation of the pyrolysis of propane in hydrogen plasma. International journal o f hydrogen energy, (2016). 41: p. 22689-22697. 35.X. Zheng, S.T., L. Dong, S. Li, H. Chen,, Silica-coated LaNiO3 nanoparticles for non-thermal plasma assisted dry reforming of methane: Experimental and kinetic studies. Chemical engineering journal, (2015). 265: p. 147-156. 36.H. Lee, D.H.L., Y. H. Song, W. C. Choi, Y. K. Park, D. H. Kim,, Synergistic effect of non-thermal plasma–catalysis hybrid system on methane complete oxidation over Pd-based catalysts. Chemical engineering journal, (2015). 259: p. 761-770. 37.D. Shekhawat, Nonconventional Reforming Methods. (2011): p. 261-283. 38.G. Dieckmann, Development of Ni-based sulfur resistant catalyst for diesel reforming. Office of fossil energy fuel cell program, (2006): p. 1-32. 39.A. Ovenston, J.R.W., Generation of heat in a single catalyst pellet placed in an electromagnetic field for endothermic reforming of hydrocarbons. Journal of the chemical society, faraday transactions 1: Physical chemistry in condensed phases
(1983). 79: p. 1073-1084. 40.N. H. Elsayed, N.R.M.R., B. Joseph, J. N. Kuhn,, Low temperature dry reforming of methane over Pt–Ni–Mg/ceria–zirconia catalysts. Applied catalysis b: environmental, (2015). 179: p. 213-219. 41.B. Fidalgo, J.Á.M., Carbon materials as catalysts for decomposition and CO2 reforming of methane: a review. Chinese journal of catalysis, (2011). 32: p. 207-216. 42.V. Yu. Bychkov, Y.P.T.y., V. N. Korchak,, The mechanism of methane reforming with carbon dioxide: comparison of supported Pt and Ni catalysts. Kinetics and catalysis, (2003). 44: p. 353-359. 43.D. A. Skoog, F.J.H., T. A. Nieman, , Principles of instrumental analysis. (2003). 44.蔡蘊明, 氣象層析儀簡介. (1999). 45.K. S. W. Sing, S.J.G., Adsorption, Surface area and porosity. (1982): p. 283. 46.K. S. W. Sing, Pure and appl. chem and colorist. (1976): p. 8,69. 47.A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,. Solid State Communications, (2007). 143: p. 47-57. 48.L. M. Malard, M.A.P., G. Dresselhaus, M. S. Dresselhaus,, Raman spectroscopy in graphene. Physics reports, (2009). 473: p. 51-87. 49.A. Tamosiunas, P.V., V. Valincius, V. Grigaitiene, Production of synthesis gas from propane using thermal water vapor plasma. International journal o f hydrogen energy, (2014). 39: p. 2078-2086. 50.G. G. Park, T.H.Y., Y. G. Yoon, W. Y. Lee, C. S. Kim,, Pore size e'ect of the DMFC catalyst supported on porous materials. International journal of hydrogen energy, (2003). 28: p. 645-650. 51.D. Song, J.L., Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. Journal of molecular catalysis a: chemical, (2006). 247: p. 206-212. 52.J. R. Rostrup-Nielsen, Industrial relevance of coking. Catalysis today, (1997). 37: p. 225-232.
|