跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 01:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪瓊慧
研究生(外文):Chiung-Hui Hong
論文名稱:粒線體DNA減除與4977-bp斷損突變對人類細胞凋亡行為之影響
論文名稱(外文):Effects of Mitochondrial DNA Depletion and 4977 bp Deletion on the Apoptotic Behaviors of Human Cells
指導教授:魏 耀 揮
指導教授(外文):Yau-Huei Wei
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:84
中文關鍵詞:粒線體腦肌病粒線體DNA細胞凋亡staurosporine細胞質融合細胞株4977-bp斷損突變
外文關鍵詞:mitochonrial encephalomyopathymtDNA depletionapoptosisstaurosporinecybrids4977-bp deletion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中 文 摘 要
粒線體腦肌病(encephalomyopathy)的發生與神經細胞或肌肉細胞的損失有關。因此,我假設粒線體呼吸鏈的功能缺陷是粒線體疾病患者肌肉細胞或神經細胞損失的原因。呼吸鏈的功能缺陷原因可能緣於粒線體DNA(mitochondrial DNA, mtDNA)與細胞核內DNA的基因突變。粒線體腦肌病相關的mtDNA突變中,4977-bp大片段斷損突變最為常見。在本研究中,我首先探討mtDNA減除(depletion)對細胞凋亡行為的影響,藉此模擬呼吸鏈功能嚴重缺陷的情況,細胞在staurosporine(STS)處理下所表現出之凋亡行為。STS為一種廣效性的PKC抑制劑,常被用來誘使細胞發生細胞凋亡。為了排除細胞核內基因所造成的影響,我選擇經EtBr處理而減除mtDNA的r0細胞作為實驗材料,探討其細胞凋亡行為與原始143B母細胞的差異。結果顯示,在STS的處理下,r0細胞的死亡率較143B細胞高,且梯狀DNA斷裂的情形也較為嚴重。分析造成r0細胞容易死亡的原因,我發現在STS處理下,r0細胞有較高的caspase 3活性,並伴隨著細胞色素c釋放至細胞質中。所以,我推測mtDNA減除的影響層次應在caspases活化的上游。另外,藉著抗氧化酵素抑制劑的處理,我發現r0細胞並未較143B細胞敏感;且r0細胞的能量來源為以培養液中所含的丙酮酸進行無氧呼吸產生ATP,所以產生較少的活性氧分子(reactive oxygen species, ROS),因此我推測ROS並非造成r0細胞較容易走向細胞凋亡的主要原因。
再者,本實驗室先前已建立細胞質融合的技術,可將CPEO病人的細胞中所帶有之4977-bp斷損突變送入r0細胞中。我乃利用此技術所製造的細胞質融合細胞株,探討高百分比4977-bp斷損突變對細胞凋亡的影響,希望藉此可以更進一步瞭解粒線體腦肌病之致病機轉。在STS處理下,我發現不論野生型的1-3-16細胞株,或帶有高百分比4977-bp mtDNA斷損突變的51-10細胞株,都有caspase 3活性大量增加的現象,但細胞死亡率卻有明顯的差異。進一步利用自由基清除酵素抑制劑處理細胞,我發現51-10細胞株對ROS的刺激較1-3-16細胞株來得敏感。因此,我推測高百分比4977-bp mtDNA斷損突變會使細胞對ROS的耐受能力降低,並因此而較容易導致細胞凋亡或細胞壞死。
根據以上的研究結果,我推測帶有4977-bp mtDNA斷損突變的病人對氧化壓力較為敏感,給予抗氧化傷害之藥物可能會有保護性的治療效果。另一方面,mtDNA的減除對活體細胞的影響與在細胞培養所觀察到之凋亡行為應有所不同,因為在活體組織內細胞並無法獲得大量的丙酮酸。所以,需要對肌肉細胞與神經細胞的能量代謝有更清楚的瞭解,才能釐清mtDNA減除是否會在粒線體疾病患者病變組織內造成細胞凋亡。

Abstract
The pathology of mitochondrial encephalomyopathies is associated with abnormal cell loss of neurons and muscle fibers. Is it possible that mitochondrial respiratory chain dysfunction results in cell loss, which is commonly found in patients with encephalomyopathies? The respiratory chain impairment may be caused by DNA mutations in mitochondrial or nuclear genome. Among the mitochondrial DNA (mtDNA) mutations associated with mitochondrial diseases, 4977-bp deletion is the most common one. In this study, the effects of mtDNA depletion on the apoptotic behaviors of human cells were first investigated. In order to exclude the possible contributions of nuclear background on the possible effect of mtDNA itself, r0 cells derived from 143B osteosarcoma cells were used. r0 cells that are devoid of mtDNA were obtained by long-term treatment of osteosarcoma cells with ethidium bromide (EtBr). Under the treatment of staurosporine (STS), the viability, DNA fragmentation, caspase 3 activities and ROS production of r0 and parental 143B cells were compared. The results showed that r0 cells exhibited lower viability, higher caspase 3 activity and increased cytochrome c release to the cytosol. These findings suggest that mtDNA depletion exerts damaging effects on an upstream effector of caspase activation. In addition, it was also found that r0 cells were not as sensitive to the inhibitors of scavenger enzymes as 143B parental cells. Moreover, r0 cells utilize pyruvate in culture media to provide energy needed and thus produce less ROS. Taken together, these findings suggest that it is not ROS increase per se that leads r0 cells to be more susceptible to apoptosis.
By using cytoplasmic fusion techniques, 4977-bp mtDNA deletion from skin fibroblasts of a CPEO patient was introduced into r0 cells and created the so-called cybrids. The cybrids containing 0% and 85% of mtDNA with 4977-bp deletion as an experimental system were used as an experimental system to investigate the effects of high proportion of 4977-bp mtDNA deletion on apoptotic behaviors of human cells. Under the treatment of STS, both the wild-type cell line 1-3-16 and the high mutant cell line 51-10 exhibited high caspase 3 activities. However, they can be distinguished by cell viability. Moreover, by the treatment of antioxidant enzyme inhibitors, such as mercaptosuccinate and 3-amino-1, 2, 4-trizole, 51-10 cells were more susceptible to apoptosis than 1-3-16 cells. Taken together, these findings suggest that high proportion of 4977-bp mtDNA deletion may reduce the ability of cells to deal with ROS and result in apoptosis or necrosis.
Based on the results of this study, it is proposed that 4977-bp mtDNA deletion renders human cells more vulnerable to oxidative stress and that antioxidant therapy can be useful for patients with CPEO syndrome. On the other hand, the apoptotic effects of mtDNA depletion in vivo are different from those observed in cultured cells because of the supplementation of pyruvate and uridine in the medium. It is warranted to better understand the pathological changes of muscles and neurons in relation to the role of mtDNA depletion in patients with MERRF syndrome.

中文摘要..................1
英文摘要..................3
縮寫表....................5
緒論......................7
材料與方法...............18
結果.....................27
討論.....................37
參考文獻.................48
圖與表...................57

Adams, V., Gielen, S., Hambrecht, R. and Schuler, G. (2001) Apoptosis in skeletal muscle. Front. Biosci. 6, D1-D11.
Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R. and Young, I. G. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457-65.
Bernardi, P. E. (1998) Mitochondria in cell death-special issue. Biochim. Biophys. Acta 1366, 1-234.
Bobba, A., Giannattasio, S., Pucci, A., Lippolis, R., Camaschella, C. and Marra, E. (1995) Characterization of mitochondrial DNA in primary cardiomyopathies. Clin. Chim. Acta 243, 181-9.
Bonilla, E., Tanji, K., Hirano, M., Vu, T. H., DiMauro, S. and Schon, E. A. (1999) Mitochondrial involvement in Alzheimer's disease. Biochim. Biophys. Acta 1410, 171-82.
Cai, J., Wallace, D. C., Zhivotovsky, B. and Jones, D. P. (2000) Separation of cytochrome c-dependent caspase activation from thiol-disulfide redox change in cells lacking mitochondrial DNA. Free Radic. Biol. Med. 29, 334-42.
Chomyn, A., Martinuzzi, A., Yoneda, M., Daga, A., Hurko, O., Johns, D., Lai, S. T., Nonaka, I., Angelini, C. and Attardi, G. J. (1992) MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc. Natl. Acad. Sci. USA 89, 4221-5.
Dey, R. and Moraes, C. T. (2000) Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-xL in osteosarcoma cells. J. Biol. Chem. 275, 7087-94.
DiMauro, S., Bonilla, E., Davidson, M., Hirano, M. and Schon, E. A. (1998) Mitochondria in neuromuscular disorders. Biochim. Biophys. Acta 1366, 199-210.
Dringen, R. and Hamprecht, B. (1997) Involvement of glutathione peroxidase and catalase in the disposal of exogenous hydrogen peroxide by cultured astroglial cells. Brain Res. 759, 67-75.
Dunbar, D. R., Moonie, P. A., Zeviani, M. and Holt, I. J. (1996) Complex I deficiency is associated with 3243G:C mitochondrial DNA in osteosarcoma cell cybrids. Hum. Mol. Genet. 5, 123-29.
Fang, W., Huang, C. C., Lee, C. C., Cheng, S. Y., Pang, C. Y. and Wei, Y. H. (1993) Ophthalmologic manifestations in MELAS syndrome. Arch. Neurol. 50, 977-80.
Gilkerson, R. W., Margineantu, D. H., Capaldi, R. A. and Selker, J. M. (2000) Mitochondrial DNA depletion causes morphological changes in the mitochondrial reticulum of cultured human cells. FEBS Lett. 474, 1-4.
Hammans, S. R., Sweeney, M. G., Brockington, M., Lennox, G. G., Lawton, N. F., Kennedy, C. R., Morgan-Hughes, J. A. and Harding, A. E. (1993) The mitochondrial DNA transfer RNALysA→G(8344) mutation and the syndrome of myoclonic epilepsy with ragged red fibres (MERRF). Relationship of clinical phenotype to proportion of mutant mitochondrial DNA. Brain 116, 617-32.
Hayashi, J., Ohta, S., Kikuchi, A., Takemitsu, M., Goto, Y. and Nonaka, I. (1991) Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA 88, 10614-8.
Herrmann, M., Lorenz, H. M., Voll, R., Grunke, M., Woith, W. and Kalden, J. R. (1994) A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res. 22, 5506-7.
Hetts, S. W. (1998) To die or not to die: an overview of apoptosis and its role in disease. JAMA 279, 300-7.
Holt, I. J., Harding, A. E. and Morgan-Hughes, J. A. (1988) Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717-9.
Horton, T. M., Graham, B. H., Corral-Debrinski, M., Shoffner, J. M., Kaufman, A. E., Beal, M. F. and Wallace, D. C. (1995) Marked increase in mitochondrial DNA deletion levels in the cerebral cortex of Huntington's disease patients. Neurology 45, 1879-83.
James, A. M., Wei, Y. H., Pang, C. Y. and Murphy, M. P. (1996) Altered mitochondrial function in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem. J. 318, 401-7.
Jiang, S., Cai, J., Wallace, D. C. and Jones, D. P. (1999) Cytochrome c-mediated apoptosis in cells lacking mitochondrial DNA. Signaling pathway involving release and caspase 3 activation is conserved. J. Biol. Chem. 274, 29905-11.
Jun, A. S., Brown, M. D. and Wallace, D. C. (1994) A mitochondrial DNA mutation at nucleotide pair 14459 of the NADH dehydrogenase subunit 6 gene associated with maternally inherited Leber hereditary optic neuropathy and dystonia. Proc. Natl. Acad. Sci. USA 91, 6206-10.
King, M. P. and Attardi, G. (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500-3.
Kiyomoto, B. H., Tengan, C. H., Moraes, C. T., Oliveira, A. S. and Gabbai, A. A. (1997) Mitochondrial DNA defects in Brazilian patients with chronic progressive external ophthalmoplegia. J. Neurol. Sci. 152, 160-5.
Kluck, R. M., Martin, S. J., Hoffman, B. M., Zhou, J. S., Green, D. R. and Newmeyer, D. D. (1997) Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J.16, 4639-49.
Lee, Y. J. and Shacter, E. (2000) Hydrogen peroxide inhibits activation, not activity, of cellular caspase-3 in vivo. Free Radic. Biol. Med. 29, 684-92.
Lezza, A. M., Mecocci, P., Cormio, A., Beal, M. F., Cherubini, A., Cantatore, P., Senin, U. and Gadaleta, M. N. (1999) Mitochondrial DNA 4977 bp deletion and OH8dG levels correlate in the brain of aged subjects but not Alzheimer's disease patients. FASEB J. 13, 1083-8.
Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479-89.
Liu, V. W., Zhang, C. and Nagley, P. (1998) Mutations in mitochondrial DNA accumulate differentially in three different human tissues during ageing. Nucleic Acids Res. 26, 1268-75.
Liu, X., Kim, C. N., Yang, J., Jemmerson, R. and Wang, X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-57.
Lu, C. Y., Lee, H. C., Fahn, H. J. and Wei, Y. H. (1999) Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat. Res. 423, 11-21.
Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-90.
Mak, S. C., Chi, C. S., Liu, C. Y., Pang, C. Y. and Wei, Y. H. (1996) Leigh syndrome associated with mitochondrial DNA 8993 T→G mutation and ragged-red fibers. Pediatr. Neurol. 15, 72-5.
Manouvrier, S., Rotig, A., Hannebique, G., Gheerbrandt, J. D., Royer-Legrain, G., Munnich, A., Parent, M., Grunfeld, J. P., Largilliere, C., Lombes, A. and et al. (1995) Point mutation of the mitochondrial tRNALeu gene (A 3243 G) in maternally inherited hypertrophic cardiomyopathy, diabetes mellitus, renal failure, and sensorineural deafness. J. Med. Genet. 32, 654-6.
Marusich, M. F., Robinson, B. H., Taanman, J. W., Kim, S. J., Schillace, R., Smith, J. L. and Capaldi, R. A. (1997) Expression of mtDNA and nDNA encoded respiratory chain proteins in chemically and genetically-derived Rho0 human fibroblasts: a comparison of subunit proteins in normal fibroblasts treated with ethidium bromide and fibroblasts from a patient with mtDNA depletion syndrome. Biochim. Biophys. Acta 1362, 145-59.
Marzo, I., Brenner, C., Zamzami, N., Jurgensmeier, J. M., Susin, S. A., Vieira, H. L., Prevost, M. C., Xie, Z., Matsuyama, S., Reed, J. C. and Kroemer, G. (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027-31.
Mirabella, M., Di Giovanni, S., Silvestri, G., Tonali, P. and Servidei, S. (2000) Apoptosis in mitochondrial encephalomyopathies with mitochondrial DNA mutations: a potential pathogenic mechanism. Brain 123, 93-104.
Morris, G. E. (2000) Nuclear proteins and cell death in inherited neuromuscular disease. Neuromuscul. Disord. 10, 217-27.
Murphy, K. M., Streips, U. N. and Lock, R. B. (1999) Bax membrane insertion during Fas(CD95)-induced apoptosis precedes cytochrome c release and is inhibited by Bcl-2. Oncogene 18, 5991-9.
Murphy, M. P. and Smith, R. A. (2000) Drug delivery to mitochondria: the key to mitochondrial medicine. Adv. Drug. Deliv. Rev. 41, 235-50.
Paradies, G., Ruggiero, F. M., Petrosillo, G. and Quagliariello, E. (1998) Peroxidative damage to cardiac mitochondria: cytochrome oxidase and cardiolipin alterations. FEBS Lett. 424, 155-8.
Pesce, V., Cormio, A., Fracasso, F., Vecchiet, J., Felzani, G., Lezza, A. M., Cantatore, P. and Gadaleta, M. N. (2001) Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle. Free Radic. Biol. Med. 30, 1223-33.
Porteous, W. K., James, A. M., Sheard, P. W., Porteous, C. M., Packer, M. A., Hyslop, S. J., Melton, J. V., Pang, C. Y., Wei, Y. H. and Murphy, M. P. (1998) Bioenergetic consequences of accumulating the common 4977-bp mitochondrial DNA deletion. Eur. J. Biochem. 257, 192-201.
Reed, J. C., Jurgensmeier, J. M. and Matsuyama, S. (1998) Bcl-2 family proteins and mitochondria. Biochim. Biophys. Acta 1366, 127-37.
Salvesen, G. S. and Dixit, V. M. (1997) Caspases: intracellular signaling by proteolysis. Cell 91, 443-6.
Sandri, M. and Carraro, U. (1999) Apoptosis of skeletal muscles during development and disease. Int. J. Biochem. Cell Biol. 31, 1373-90.
Santorelli, F. M., Shanske, S., Macaya, A., DeVivo, D. C. and DiMauro, S. (1993) The mutation at nt 8993 of mitochondrial DNA is a common cause of Leigh's syndrome. Ann. Neurol. 34, 827-34.
Scarlett, J. L., Sheard, P. W., Hughes, G., Ledgerwood, E. C., Ku, H. H. and Murphy, M. P. (2000) Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Lett. 475, 267-72.
Schapira, A. H. (1998) Human complex I defects in neurodegenerative diseases. Biochim. Biophys. Acta 1364, 261-70.
Sciacco, M., Fagiolari, G., Lamperti, C., Messina, S., Bazzi, P., Napoli, L., Chiveri, L., Prelle, A., Comi, G. P., Bresolin, N., Scarlato, G. and Moggio, M. (2001) Lack of apoptosis in mitochondrial encephalomyopathies. Neurology 56, 1070-4.
Shiah, S. G., Chuang, S. E., Chau, Y. P., Shen, S. C. and Kuo, M. L. (1999) Activation of c-Jun NH2-terminal kinase and subsequent CPP32/Yama during topoisomerase inhibitor beta-lapachone-induced apoptosis through an oxidation-dependent pathway. Cancer Res. 59, 391-8.
Shimizu, S., Narita, M. and Tsujimoto, Y. (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483-7.
Shoffner, J. M., Lott, M. T., Voljavec, A. S., Soueidan, S. A., Costigan, D. A. and Wallace, D. C. J. (1989) Spontaneous Kearns-Sayre/ chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc. Natl. Acad. Sci. USA 86, 7952-6.
Shoffner, J. M. and Wallace, D. C. (1990) Oxidative phosphorylation diseases. Disorders of two genomes. Adv. Hum. Genet. 19, 267-330.
Silva, J. P., Kohler, M., Graff, C., Oldfors, A., Magnuson, M. A., Berggren, P. O. and Larsson, N. G. (2000) Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat. Genet. 26, 336-40.
Sparaco, M., Rosoklija, G., Tanji, K., Sciacco, M., Latov, N., DiMauro, S. and Bonilla, E. (1993) Immunolocalization of heat shock proteins in ragged-red fibers of patients with mitochondrial encephalomyopathies. Neuromuscul. Disord. 3, 71-6.
Susin, S. A., Zamzami, N., Castedo, M., Hirsch, T., Marchetti, P., Macho, A., Daugas, E., Geuskens, M. and Kroemer, G. (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J. Exp. Med. 184, 1331-41.
Suzuki, Y., Goto, Y., Taniyama, M., Nonaka, I., Murakami, N., Hosokawa, K., Asahina, T., Atsumi, Y. and Matsuoka, K. (1997) Muscle histopathology in diabetes mellitus associated with mitochondrial tRNALeu(UUR) mutation at position 3243. J. Neurol. Sci. 145, 49-53.
Tafani, M., Minchenko, D. A., Serroni, A. and Farber, J. L. (2001) Induction of the mitochondrial permeability transition mediates the killing of HeLa cells by staurosporine. Cancer Res. 61, 2459-66.
Vander Heiden, M. G., Chandel, N. S., Williamson, E. K., Schumacker, P. T. and Thompson, C. B. (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91, 627-37.
Vaux, D. L. and Strasser, A. (1996) The molecular biology of apoptosis. Proc. Natl. Acad. Sci. USA 93, 2239-44.
Verma, A., Moraes, C. T., Shebert, R. T. and Bradley, W. G. (1996) A MERRF/PEO overlap syndrome associated with the mitochondrial DNA 3243 mutation. Neurology 46, 1334-6.
Wallace, D. C., Brown, M. D. and Lott, M. T. (1999) Mitochondrial DNA variation in human evolution and disease. Gene 238, 211-30.
Wallace, D. C., Ye, J. H., Neckelmann, S. N., Singh, G., Webster, K. A. and Greenberg, B. D. (1987) Sequence analysis of cDNAs for the human and bovine ATP synthase beta subunit: mitochondrial DNA genes sustain seventeen times more mutations. Curr. Genet. 12, 81-90.
Wang, J., Silva, J. P., Gustafsson, C. M., Rustin, P. and Larsson, N. G. (2001) Increased in vivo apoptosis in cells lacking mitochondrial DNA gene expression. Proc. Natl. Acad. Sci. USA 98, 4038-43.
Wiesner, D. A. and Dawson, G. (1996) Staurosporine induces programmed cell death in embryonic neurons and activation of the ceramide pathway. J. Neurochem. 66, 1418-25.
Yang, J. H., Lee, H. C., Lin, K. J. and Wei, Y. H. (1994) A specific 4977-bp deletion of mitochondrial DNA in human ageing skin. Arch. Dermatol. Res. 286, 386-90.
Zeviani, M., Petruzzella, V. and Carrozzo, R. J. (1997) Disorders of nuclear-mitochondrial intergenomic signalling. J. Bioenerg. Biomembr. 29, 121-30.
Zhivotovsky, B., Orrenius, S., Brustugun, O. T. and Doskeland, S. O. (1998) Injected cytochrome c induces apoptosis. Nature 391, 449-50.
Zou, H., Henzel, W. J., Liu, X., Lutschg, A. and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-13.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top