跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 10:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昭慶
研究生(外文):Gene Chen
論文名稱:以(hfac)CuI(COD)為先驅物之有機金屬化學氣相沉積銅膜的研究
論文名稱(外文):A Study on the MOCVD Copper Films using (hfac)CuI(COD) as the Precursor
指導教授:李嘉平李嘉平引用關係
指導教授(外文):Chiapyng Lee
學位類別:博士
校院名稱:國立臺灣科技大學
系所名稱:化學工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:233
中文關鍵詞:有機金屬化學氣相沉積銅先驅物(hfac)Cu(COD)動力
外文關鍵詞:metal-organic chemical vapor depositioncopper precursor(hfac)Cu(COD)Kinetic
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1738
  • 評分評分:
  • 下載下載:126
  • 收藏至我的研究室書目清單書目收藏:0
本研究以先驅物(hfac)CuI(COD)在不同的TaNx阻障層上,利用化學氣相沉積法(Metal-Organic Chemical Vapor Deposition)進行沉積銅晶種層(Seed layer),我們說明了銅先驅物(hfac)CuI(COD)的合成、鑑定以及熱分析的動力學計算。接著,開始製備不同的TaNx薄膜當作基材,以化學氣相沉積法進行銅晶種層的成長及成膜後的動力分析,最後嘗試以電催化化學氣相沉積法進行銅晶種層的成長。
首先在合成先驅物方面,利用H1-NMR、FTIR、DSC、TGA與XRD圖譜,確定本實驗成功的合成先驅物(hfac)CuI(COD),並且為一純度非常高之化合物。並確認先驅物(hfac)CuI(COD)裝入化學氣相沉積系統的參數設定,也確認了初步快速地篩選先驅物的步驟。再以DSC圖譜進行動力分析,以isoconversional法分析得到的先驅物(hfac)CuI(COD)所進行的自身氧化還原反應是一個單步驟的反應。同時,也求出平均活化能分別為KAS法的18.648  0.082 kJmol-1; Starink (k=1.92) 法的 17.887  0.071 kJmol-1以及Tang 法的17.640  0.078 kJmol-1,並確認了動力模式遵循著二階反應模式F2。
接著探討不同沉積時間及沉積溫度下,銅膜的表面形態、結構及組成之影響。由實驗結果所顯示以-Ta(N)(bcc)的TaN0.46、f.c.c-TaN的TaN0.82及接近amorphous與f.c.c-TaN相混的TaN1.12三種不同氮含量的TaNx做為成長銅晶種層的基材,得知在基材TaN0.46,沉積溫度愈高銅晶核大小愈大,而且不論在何種沉積溫度,都符合Volmer-Weber(島狀)型態成長,使得銅晶核成長現象已經非常接近在一般導體表面的成長,沉積時間高於5分鐘即可得到平坦、緻密且具有較佳的銅(111)優選晶向的銅晶種層。在基材TaN0.82上,是以Frank-Van der Merwe(層狀)形態成長,沉積溫度190℃、沉積時間高於5分鐘既可得到平坦、緻密且具有較佳的銅(111)優選晶向的銅晶種層。在基材TaN1.12上,沉積溫度190℃是以Frank-Van der Merwe(層狀)形態成長,沉積時間高於7分鐘既可得到平坦、緻密且具有較佳的銅(111)優選晶向的銅晶種層。而在基材TaN0.82及TaN1.12上沉積銅晶種層時,沉積溫度190℃是最佳的操作條件,並且沉積時間介於5到10分鐘即可得到平坦、緻密且具有較佳的銅(111)優選晶向以及接近不含雜質的純銅晶種層。最後,以TaN0.46、TaN0.82和TaN1.12三種不同的TaNx阻障層沉積在深寬比約為1:3的SiO2 圖案晶片上,再沉積銅晶種層,除了TaN0.46可在沉積溫度140或190℃皆可操作外,TaN0.82和TaN1.12必須將沉積溫度降至140℃,讓成長的溫度效應落於表面反應控制的化學反應區域是最佳的操作條件。
我們提出正確的的反應機構及符合實驗動力分析的速率決定步驟。反應機構如下:
步驟1: Adsorption of

步驟2: Disproportionation reaction to form copper and Cu(hfac)2

並得到動力模式,並求出反應活化能為14.82kJ/mol。

最後,以電催化化學氣相沉積法沉積銅膜比傳統化學氣相沉積法具有更高的成核密度、更高的成長速率以及更低的活化能,表示在TaNx (阻障層)上通入直流電可以促進銅核的形成及增加CuI(hfac)(ad)進行自身氧化還原反應的速率。並且推測通入直流電進行電催化化學氣相沉積法的反應機制如下:
步驟1: 2(hfac)CuI(COD)(g) → 2CuI(hfac)(ad) + 2COD(g)
步驟2: CuI(hfac)(ad) + e- (DC) → Cu(s) + hfac-(ad)
步驟3: CuI(hfac)(ad) + hfac-(ad) → CuII(hfac)2 (g) + e-
由以上實驗可知本研究完整的建立了先驅物的篩選和鑑定、銅晶種層沉積條件和動力分析以及電催化現象增快了沉積速率等一整套銅製程中成長晶種層之製程方法。
The feasibility of using a metal-organic chemical vapor deposition (MOCVD) technique with hexafluoroacetylacetonate-copper(I)- cycloocta-1,5-diene (hfac)CuI(COD) as a precursor to achieve the deposition of a thin and conformal copper film was examined. Self-synthesis of [(hfac)CuI(COD)] and characterization with H1-Nuclear Magnetic Resonance Spectrometer (H1-NMR) and Fourier-Transform Infrared Absorption Spectrophotometer (FTIR)、differential scanning calorimetry (DSC) where performed and (hfac)CuI(COD) was confirmed to be the product. The kinetics of disproportionation reaction of (hfac)CuI(COD) was investigated by the use of DSC with different heating rates in dynamic nitrogen atmosphere. First, the activation energies (Eas) of the disproportionation reaction were estimated with model-free isoconversional methods respectively. The Eas were found to fall within the range between 17.6 and 18.7 kJmol-1, with no temperature and heating rate effects observed. Then, when the Ea was ascertained, the model-fitting methods with least square fitting procedure were adopted to determine the kinetic model for the disproportionation reaction. As a result, the disproportionation reaction follows second-order reaction kinetics.
Second, the deposition of thin films on TaN0.46 (-Ta(N)(bcc))、TaN0.82(f.c.c-TaN) and TaN1.12 (amorphous+f.c.c-TaN) substrates was achieved in a cold-wall CVD reactor. On TaN0.46 substrate, the surface morphology of the Cu growth at deposition temperature 140, 190 and 230℃ were followed Volmer-Weber type to form a smooth and continuous film in 5minute of deposition time. On TaN0.82 substrate, the surface morphology of the Cu growth at deposition temperature 190℃ were followed Frank-Van der Merwethe type. It was found that the flatter and denser copper films, and stronger preferred orientation of Cu(111) were obtained after 5minute of deposition time. On TaN1.12 substrate, the surface morphology of the Cu growth at deposition temperature 190℃ were also followed Frank-Van der Merwethe type and formed the flatter and denser copper films, and stronger preferred orientation of Cu(111) after 7min. Then, the deposition of Cu thin films on TaN0.46、TaN0.82 and TaN1.12 trenches were investigated. On TaN0.46 substrate, a continuous and good step coverage Cu film was obtained at ambient deposition temperature. On TaN0.82 and TaN1.12 trenches, the deposition temperature were decreased down to 140℃. Because the growth rate of copper at 140℃ was followed the surface reaction limited regime, that could be formed smooth and continuous thin copper films.
Third, growth kinetics of copper films with MOCVD reaction system using (hfac)CuI(COD) as the precursor was studied. In this research, the kinetic data of MOCVD Cu thin films as a function of deposition temperature and partial pressure of precursor were investigated. It was found that the growth rate of copper between 140~190℃ was written surface reaction limited regime with the value of activation energy as 14.82kJ/mol. Through the analysis on the growth kinetics, the kinetic model and mechanism of chemical vapor deposition as follows:
Step1: Adsorption of

Step2: Disproportionation reaction to form copper and Cu(hfac)2

And the reaction model:

Finally, a novel electro-enhanced metalorganic chemical vapor deposition (EEMOCVD) technique for producing copper (Cu) thin films on TaN1.03/Si substrates with (hfac)CuI(COD) as a precursor was investigated in this research. This novel technique features supplying a direct current (DC) to TaN1.03/Si substrates while the deposition of Cu thin films is in progress. Experiments on EEMOCVD yielded fortuitously positive results: (1) the deposited Cu films were superior in quality; and (2) the growth rate of Cu film deposition increased. The above results are more desirable than those achieved through the conventional MOCVD (CMOCVD) technique. The proposed EEMOCVD technique hence proves to be more effective in forming smooth and continuous thin copper films.
中文摘要 I
英文摘要 IV
誌謝 VIII
目錄 IX
圖索引 XII
表索引 XXI
第一章 緒論 1
1.1深次微米元件金屬導線的選擇 1
1.2金屬導線之發展概況 8
1.3銅製程應用於ULSI 13
第二章 理論基礎與文獻回顧 18
2.1銅金屬薄膜成長方法 18
2.2銅金屬化合物先驅物的選擇 22
2.3非恆溫微差掃描卡計的動力分析 32
2.3.1 Model-fitting methods 34
2.3.2 model-free isoconversional methods 35
2.4銅晶種層(Copper Seed Layer)的成長 41
2.5研究動機及方法 47
第三章 實驗設備與程序 48
3.1實驗設備 48
3.1.1磁控射頻濺鍍系統 38
3.1.2合成系統 52
3.1.3 有機金屬化學氣相沉積系統 56
3.1.4 滯留時間(Residence Time)之計算 63
3.2分析儀器、實驗藥品與材料 65
3.2.1實驗藥品及材料 65
3.2.2分析儀器 67
3.3實驗條件 70
3.3.1濺鍍TaNx薄膜之操作條件 70
3.3.2化學氣相沈積銅晶種層之實驗條件 71
3.4實驗程序 72
3.4.1矽晶片之準備 72
3.4.2 TaNx薄膜之濺鍍操作步驟 72
3.4.3 (hfac)CuI(COD)先驅物之合成 74
3.4.4化學氣相沉積成長銅膜 79
3.4.4.1銅晶種層沉積步驟 79
3.4.4.2系統清潔步驟 80
3.4.5先驅物分壓之量測 82
第四章 銅先驅物的化性及物性分析 86
4.1銅先驅物(hfac)CuI(COD)之化性及物性分析 86
4.1.1銅先驅物(hfac)CuI(COD)之化學分析 86
4.1.2合成之先驅物(hfac)CuI(COD)的熱分析 87
4.2銅先驅物(hfac)CuI(COD)之非恆溫DSC熱分析 94
4.2.1 model-free isoconversional method 95
4.2.2 Model-fitting method 97
第五章 銅晶種層的成長及銅膜的動力分析 112
5.1基材TaNx薄膜的製備 112
5.2化學氣相沉積法成長銅晶種層 126
5.2.1 在基材TaN0.46上成長銅晶種層 126
5.2.2 在基材TaN0.82上成長銅晶種層 135
5.2.3 在基材TaN1.12上成長銅晶種層 143
5.2.4 在各種TaNx平面基材上成長銅晶種層的最適條件與基材效應 152
5.2.5 在溝槽TaNx基材上成長銅晶種層的最適條件 167
5.3化學氣相沉積法成長銅膜之動力分析 175
5.3.1 成長銅膜之動力實驗數據分析 177
5.3.2 成長銅膜理論機構之推演 184
5.3.3 成長銅膜之動力模式分析 186
5.4電催化化學氣相沉積法成長銅膜 194
第六章 結論 211
參考文獻 216
符號索引 224
附 錄 226
作者簡介 232
論文著作 233
1.陳力俊, “微電子材料與製程”, p.279 (2000).
2.The International Technology Roadmap for Semiconductors (2004).
3.S-P Heng et al, 1995 International Symposium on VLSI TSA, p.164.
4.張俊彥, 鄭晃忠 “積體電路製程及設備技術手冊”, p.241 (1997).
5.吳世全, “毫微米通訊”, 第六卷, 第三期, p.38 (1999).
6.R. Miller, Circuit Analysis Theory and Practice, Delmar Publishers, p.42 (1995).
7.W. A. P. Claassen, J. Bloem, J. Electrochem. Soc., 128(6) 1353 (1981).
8.陳錦山、黃獻慶、鄭義冠, “真空科技”, 第十二卷, 第二期, p.26 (1999).
9.Hugh Baker, ASM Handbook Vol.3 Alloy Phase Digrams, 1992.
10.Shacham-Diamand, Y., Li J., Olowlafe, J. O., Russel, S., Tamou, Y., Mayer, J. W., Proc 9 Bienn Univ. Gov. Ind. Microelectron Symp. Publ. by IEEE Service Center, Piscataway, NJ, USA (IEEE cat. n91ch3027-0), p.210.
11.楊文祿、吳其昌,深次微米後段金屬連線技術,真空科技,十二卷二期,p.44 (1999).
12.張勁燕,深次微米矽製程技術,p.225 (2002).
13.劉富臺,銅製成及低介電係數材料技術,電子月刊,五卷十二期,p.100 (1999).
14.M. J. Hampden-smith, T. T. Kodas, Polyhedron, 14, 699 (1995).
15.T. Kodas, M. J. Hampden-smith, The Chemistry of Metal CVD; VCH: Weinheim, 1994.
16.H.-K. Shin, M. J. Hampden-Smith, E. N. Duesler, T. T. Kodas, Inorg. Chem., Polyhedron, 10, 645 (1991).
17.H.-K. Shin, K. M. Chi, J. Farkas, M. J. Hampden-Smith, T. T. Kodas, E. N. Duesler, Inorganic Chemistry, 31, 424 (1992).
18.M. J. Hampden-Smith, T. T. Kodas, M. Paffett, J. D. Farr, H.-K. Shin, Chem. Mater., 2, 636 (1990).
19.G. Doyle, K. A. Eriksen, D. V. Engen, Organometallics, 4, 830 (1985).
20.S. W. Rhee, S. W. Kang, S. H. Han, Electrochemical and Solid-State Letters, 3, 135 (2000).
21.C. Roger, T. S. Corbitt. M. J. Hampden-Smith, T. T. Kodas, Appl. Phys. Lett., 65, 1021 (1994).
22.T. Q. Cheng, K. Griffiths, P. R. Norton, R. J. Puddephatt, Appl. Surf. Sci., 126, 303 (1998).
23.I. A. Rauf, R. Siemsen, M. Grunwell, R. F. Egerton, M. Sayer, J. Mater. Res., 14, 4345 (1999).
24.W. J. Lee, J. S. Min, S. K. Rha, S. S. Chun, C. O. Park, D. W. Kim, J. Mater. Sci., Mater. Electron., 7, 111 (1996).
25.A. Jain, K.-M. Chi, T. T. Kodas, M. J. Hampden-Smith, J. Electrochem. Soc., 140, 1434 (1993).
26.J. A. T. Norman, D. A. Roberts, A. K. Hochberg, P. Smith, G. A. Petersen, J. E. Parmeter, C. A. Apblett, T. R. Omstead, Thin Solid Films, 262, 46 (1995).
27.S. Kim, J. M. Park, D. J. Choi, Thin Solid Films, 320, 95 (1998).
28.J. Farkas, M. J. Hampden-Smith, T. T. Kodas, J. Phys. Chem., 98, 6763 (1994).
29.A. Jain, K.-M. Chi, T. T. Kodas, M. J. Hampden-Smith, J. D. Farr, M. F. Paffett, Chem. Mater., 3, 995 (1991).
30.T. H. Baum, C. E. Larson, J. Electrochem. Soc., 140, 154 (1993).
31.M. J. S. Dwear, Bull. Chem. Soc. Fr., 18, C79 (1951); J. Chatt, L. A. Duncanson, J. Chem. Soc., 59, 2332 (1991).
32.C. H. Jun, Y. T. Kim, J. T. Baek, D. R. Kim, H. J. Yoo, J. Vac. Sci. Technol. A, 14, 3214 (1996).
33.A. Devi, J. Goswami, R. Lakshmi, S. A. Shivashankar, S. Chandrasekara, J. Mater. Res., 13(3), 687 (1998).
34.Yu-neng Chang, Mat. Res. Soc. Symp. Proc., 280, 649, (1993).
35.R. L.Van Hemert, L. B. Spendlove, R. E. Sievers, J. Electrochem. Soc., 112, 1123 (1965).
36.K. M. Chi, H.-K. Shin, M. J. Hampden-Smith, E. N. Duesler, and T. T. Kodas, Polyhedron., 10. 2293-2297(1991).
37.R. Kumar, F. R. Fronczek, A. W. Maverick, W. G. Lai, and G. L. Griffin, Chemistry of Materials, 4. 577-581 (1992).
38.T. H. Baum and C. E. Larson, Journal of the electrochemical society, 140. 154-160(1993).
39.S. L. Cohen, M. Liehr, and S. Kasi, Journal of Vacuum Science and Technology A, 10, 863-870(1992).
40.L. H. Dubois and B. R. Zegarski, Journal of the electrochemical society, 139, 3295-3333(1992).
41.G. R. Heal, Thermochim. Acta, 340/341, 69(1999).
42.C D. Doyle, J. Appl. Polym. Sci., 6, 639(1962).
43.M. Avrami, J. Chem. Phys., 7, 1103(1939).
44.M. Avrami, J. Chem. Phys., 8, 212(1940).
45.J. Šestak, V. Šatawa and W. Wendlandt, Thermochim. Acta, 7, 333(1973).
46.A. Lucci, in “Principi ed Applicazioni di Calorimetria et di Analisi Termica”, Eds G. Della Gatta, A. Lucci, Piccin Nuova Libraria, Padova (1984).
47.B. B. Achar, G. W. Brindley and J. H. Sharp, Proc. Int. Clay Conf. Jerusalem, Ed. Heller & Weiss, 1, 67(1966).
48.Hu Rongzu, T. Zhengquan and L. Yanjun, Thermochim.Acta, 123, 135-151(1988).
49.A. W. Coats, J. P. Redfern, Nature, 201, 67(1964).
50.H. L. Fridman, J. Polym. Sci. C 6, 183(1964).
51.S. Vyazovkin, V. V. Goriyachko, Thermochim. Acta, 194, 221(1992).
52.S. Vyazovkin, A. I. Lesnikovich, Russ. J. Phys. Chem., 62, 2949(1988).
53.O. Schl�卌ilch, Vorlesungen Űber Hȍhere Analysis, second ed., Braunschweig, 266(1874).
54.T. Ozawa, Thermochim. Acta, 203, 159(1992).
55.M. J. Starink, Thermochim. Acta, 404, 163(2003).
56.M. J. Starink, Thermochim. Acta, 288, 97(1996).
57.G. I. Senun, R. T.Yang, J. Thermal. Anal., 16, 1033(1977).
58.J. H. Flynn, J. Thermal. Anal., 27, 95(1983).
59.J. Opfermam and E. Kaiserberger, Thermochim. Acta, 203, 167(1992).
60.W. Tang, D. Chen, Thermochim. Acta, 433, 72(2005).
61.P. murry, J. White, Trans. Brot. Ceram. Soc., 54, 204(1955).
62.K. K. Choi, S. W. Rhee, Thin solid film, 397, 70 (2001).
63.T. Q. Cheng, K. Griffiths, P. R. Norton, and R. J. Puddephatt, Applied surface science, 126, 303-311(1998).
64.S. K. Reynolds, C. J. Smart, E. F. Baran, T. H. Baum, C. E. Larson, and P. J. Brock, Applied Physics Letters, 59, 2332-2337(1991).
65.S. L. Cohen, Michael Liehr, and Kasi, Applied Physics Letters, 60, 50-56(1992).
66.A. Jain, K. M. Chi, M. J. Hampden-Smith, T. T. Kodas, J. D. Farr, and M. F. Paffett, Journal of Materials Research, 7,261-269(1992).
67.E. S. Hwang and J. Lee, Eletrochemical and Solid-State Letters, 3 (3), 138 (2000).
68.J. Lim, C. Lee, Solid-State Electronics, 45, 2083-2088(2001).
69.D. F. Lii, J. L. Huang, W. K. Tsai, W. T. Lo, and B. S. Yau, Surface Engineering, 17(4), 295 (2001).
70.S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, “Handbook of Plasma Processing Technology”, Noyes Publication, New Jersey, U.S.A, 1990.
71.W. A. Herrmann, A. Salzer, “Synthetic Methods of Organometallic and Inorganic Chemistry” Vol. 1 Literature, Laboratory Techniques, and Common Starting Materials, New York 1996.
72.龔耀雄,“薄膜的化性”,國立台灣科技大學化工所(1995).
73.D. A. Skoog, J. J. Leary, Principles of Instrumental Analysis, Fourth Edition, Harcount Brace College Publishers, 275(1991).
74.李欣浤,“二階段有機金屬化學氣相沉積銅晶種層及其在積體電路之銅製程上的應用”,國立台灣科技大學化工所(2005).
75.N. Sbirrazzuoli, Y. Girault and L. El�縵ant, J. Therm. Anal., 38, 1509 (1992).
76.N. Sbirrazzuoli, Y. Girault and L. El�縵ant, Thermochim. Acta., 293, 25 (1997).
77.E. J. Mittemeijer, J. Mater. Sci., 27, 3977 (1992).
78.Z. Gao, M. Nasahiro, I. Amasaki, Thermochim. Acta., 369, 137 (2001).
79.Elder JP, J. Thermo. Anal., 29, 1327(1984).
80.Elder JP, Thermochim. Acta., 95, 41(1985).
81.Elder JP, J. Thermo. Anal., 34, 1467(1988).
82.Elder JP, J. Thermo. Anal., 35, 1965(1989).
83.Elder JP, J. Thermo. Anal., 36, 1077(1990).
84.Dowdy DR, J. Thermo. Anal., 32, 137(1987).
85.Dowdy DR, J. Thermo. Anal., 32, 1177(1987).
86.S. Vyazovkin, A. I. Lesnikovich, Thermochim. Acta, 165, 273(1990).
87.S. Vyazovkin, C. A. Wight, Annu. Rev. Phys. Chem., 48, 125(1997).
88.N. Koga, J. Malek, Thermochim. Acta., 282/283, 69(1996).
89.F. Baitalow, H. G. Schmidt, G. Wolf, Thermochim. Acta., 337, 111(1999).
90.S. Vyazovkin, A. I. Lesnikovich, Thermochim. Acta, 128, 297(1988).
91.S. Vyazovkin, W. Linert, Chem. Phys., 193, 109(1995).
92.A. I. Lesnikvich, S. V. Levchik, J. Thermo. Anal., 30, 677(1985).
93.S. Vyazovkin, Int. J. Chem. Kinet., 28 (2), 95 (1996).
94.M. E. Brown, D. Dollimore, A. K. Galwey, Reaction in the Solid State, Comprehensive Chemical Kinetics, Elsevier: Amsterdam, 1980, Vol.22.
95.J. Sestak, Thermophysical Properties of Solids, Comprehensive Analytical Chenistry, Elsevier: Amsterdam, 1980, Vol.12D.
96.林俊成,“RF濺鍍成長TaNx薄膜及其在積體電路之銅製程上的應用”,國立台灣科技大學化工所(1999).
97.Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1996, Card 32-1283.
98.K. Sasaki, A. Noya and T. Umezawa, Jpn. J. Appl. Phys, 29, 1043 (1990).
99.B. D. Culllity, Elements of X-ray Diffraction, Addison-Wesley Pub., London, 1978.
100.N. Terao, Japanese Journal of Applied Physics, 10, (2), 248(1971).
101.X. Sun, E. Kolawa, J. S. Chen, J. S. Reid and M. -A. Nicolet, Thin Solid Film, 236, 347 (1993).
102.L. E. Thod, Transition Metal Carbides and Nitrides, Academic, New York, 1971.
103.S. P. Chong, Y. C. Ee, Z. Chen, S. B. Law, Surface & Coatings Technology, 198, 287 (2005).
104.張松吉,“有機金屬化學氣相沉積之先驅物1,1,1,5,5,5,-六氟-2,4-戊二酮-1,5-環辛二烯銅錯合物的合成及銅薄膜的初始成長”,國立台灣科技大學化工所(2001).
105.T. Momose and Y. Shimogaki, Japanese Journal of Applied Physics, 45,(11), 8618 (2006).
106.Y. K. Chae and H. Komiyama, Journal of Applied Physics, 90, 3610-3613(2001).
107.J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, 1995, Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics, Inc.
108.J.-S. Park, H.-S. Park, S.-W. Kang, Journal of the Electrochemical Society, 149(1), C28 (2002).
109.A. Jain, K. M. Chi, T. T. Kodas, and M. J. Hampden-Smith, The Electrochemical Society, 140, 1434(1993).
110.Mehul B. Naik, Satish K. Lakshmanan, R. H. Wentorf, Robert R. Reeves and William N. Gill, Journal of Crystal Growth, 193, 133 (1998).
111.D. Hnyk, M. Bȕhl, P. T. Brain, H. E. Robertson, d. W. H. Rankin, J. Am. Chem. Soc., 124, 8078(2002).
112.K. K. Choi, S. W. Rhee, Thin solid film, 409, 147 (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文