[1] S. Kim, Y. Kim, M.S. Kim, C.K. Kim, S.K. Min and C. Lee, J. Crystal Growth 141 (1994) 324.
[2] C.S. Son, S. Kim, B.D. Min, Y. Kin, E.K. Kim, S.K. Min and I.H. Choi, Jpn. J. Appl. Phys.l.35 (1996) 6562.
[3] H. Wu and Z. Li, J. Crystal Growth 167 (1996) 429.
[4] H. Ito, K. Kurishima and N. Watanabe, J. Crystal Growth 158 (1996) 430.
[5] T.F. Kuech, J.M. Redwing, J. Crystal Growth 145 (1994) 382.
[6] Y. Kohama, C. Amano, Y. Ohiso, T. Kurokawa, Jpn. J. Appl. Phys. 34 (1995) 3504.
[7] N. Kobayashi, T. Makimoto, Y. Horikoshi, Appl. Phys. Lett. 50 (1987) 1435.
[8] K. Saito, E. Tokumitsu, T. Akatsuka, M. Miyauchi, T. Yamada, M. Konagai, K. Takahashi, J. Appl. Phys. 64 (1988) 3975.
[9] M. Konagai, T. Yamada, T. Akatsuka, S. Nozaki, R. Miyake, K. Saito, T. Fukamachi, E. Tokumitsu, K. Takahashi, J. Crystal Growth 105 (1990) 359.
[10] M.C. Hanna, Z.H. Lu, A. Majerfeld, Appl. Phys. Lett. 58 (1991) 163.
[11] P. M. Enquist, Appl. Phys. Lett. 57 (1990) 2348.
[12] M. C. Hanna, Z. H. Lu and A. Majerfeld, Appl. Phys. Lett. 58 (1991) 164.
[13] M. L. Timmons, P. K. Chiang and S. V. Hattangady, J. Crystal Growth 77 (1986) 37.
[14] J. S. Lee, I. Kim, B. D. Choe and W. G. Jeong, J. Appl. Phys. 76 (1994) 5079.
[15] H. Q. Hou, B. E. Hammons and H. C. Chui, Appl. Phys. Lett. 70 (1997) 3600.
[16] L. Li, S. Gan, B. K. Han and R. F. Hicks, Appl. Phys. Lett. 72 (1998) 951.
[17] R. J. Malik, R. N. Nottenberg, E. F. Schubert, J. F. Walker and R. W. Ryan, Appl. Phys. Lett. 53 (1988) 2661.
[18] B. T. Cunningham, G. E. Stillman and G. S. Jackson, Appl. Phys. Lett. 56 (1989) 361.
[19] T. Makimoto, N. Kobayash, H. Ito and T. Ishibashi, Appl. Phys. Lett. 54 (1989) 39.
[20] L. W. Yang, P. D. Wright, P. R. Brusenback, S. K. Ko and A. Kaleta, Electron. Lett. 27 (1991) 1145.
[21] K. L. Lear, R. P. Schneider, K. D. Choquette, S. P. Kilcoyne, J. J. Figiel and J. C. Zolper, IEEE Photon. Tech. Lett. 6 (1994) 1053.
[22] Y. Kohama, Y. Ohiso, S. Fukushima and T. Kurokawa, IEEE Photon. Tech. Lett. 6 (1994) 918.
[23] T. Nakanisi, J. Crystal Growth, 50 (1981) 255.
[24] G. B. Stringfellow, “Organometallic Vapor-Phase Epitaxy:Theory and Practice,” (Secon Edition).
[25] C. A. Larsen and G. B. Stringfellow, J. Crystal Growth 75 (1986) 274.
[26] R. A. Young and R. V. Kalin, “Scanning Electron Microscopic Techniques for Characterization of Semiconductor Materials,” in: Microelectronic Processing: Inorganicmaterial Characterization, (L. A. Casper, ed.) American Chemical Soc., Sypm. Series 295, Washington, DC, 1986, pp. 49-74.
[27] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori and E. Lifshin, Scanning Electron Microscopic and X-ray Microanalysis, Plenum, New York, 1984.
[28] Dieter K. Schroder “Semiconductor Material and Device Characterization,” Ch1. and Ch8.
[29] K. Tateno, Y. Kohama and C. Amano, J. Crystal Growth 172 (1997) 5.
[30] 任興華, “有機金屬氣相磊晶系統之研究”, 碩士論文(民81).[31] H. Schlichting, Boundary-Layer Theory 7th ed. (Mcgraw-Hill, New York, 1979).
[32] G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy-Theory and Practice (Academic Press, San Diego, 1989).
[33] N. Watanabe and H. Ito, J. Crystal Growth 178 (1997) 213.
[34] H. Hardtdegen, M. Hollfelder, R. Meyer, R. Carius, H. Munder, S. Frohnhoff, D. Szynka and H. Luth, J. Crystal Growth 124 (1992) 420.
[35] M. Konagai, T. Yamada, T. Akatsuka, K. Satito, E. Tokumitsu and K. T. Akahashi, J. Crystal Growth 98 (1989) 167.
[36] W. E. Hoke, P. J. Lemonias, D. G. Weir, H. T. Hendriks and G. S. Jackson, J. Appl. Phys. 69 (1991) 511.
[37] M. Ogirima, H. Saida, M. Suzuki and M. Maki, J. Electrochem. Soc. 125 (1978) 1879.
[38] D. L. Rode, W. R. Wagner and N. E. Schumaker, Appl. Phys. Lett. 30 (1977) 75.
[39] R. W. Grew, J. Crystal Growth 68 (1984) 44.
[40] W. Walukiewicz, J. Lagowski and H. C. Gatos, J. Appl. Phys. 53 (1982) 769.
[41] T. J. de Lyon, J. M. Woodall, M. S. Goorsky and P. D. Kirchner, Appl. Phys. Lett. 56 (1990) 1040.
[42] P. F. Fewster, in: Analysis of Microelectronic Materials and Devices, Eds. M. Grasserbauer and H. W. Werner (Wiley, New York, 1991) p. 58.