跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/11 05:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李信璋
研究生(外文):Xin-Zhang Lee
論文名稱:利用有機金屬化學氣相磊晶法成長以四溴化碳為碳摻雜之p型砷化鎵特性之研究
論文名稱(外文):Investigation of Characterization of Carbon-Doped p-Type GaAs Grown by MOCVD using CBr4
指導教授:李重義
指導教授(外文):Chong-Yi Lee
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:69
中文關鍵詞:有機金屬化學氣相磊晶法碳摻雜砷化鎵四溴化碳
外文關鍵詞:MOCVDcarbon doping GaAsCBr4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:666
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究利用有機金屬化學氣相磊晶法成長以四溴化碳為碳摻雜之p型砷化鎵之特性。研究中發現由於溴化氫會對砷化鎵造成蝕刻效應,所以四溴化碳流量的增加會造成砷化鎵成長率的減少,且會隨著三甲基鎵的流量及V/Ш比的增加而增加。除此之外,成長壓力的增加也會使得成長率跟著增加,最後在100 mbar以上時達到飽和,而成長溫度在500到650 °C的範圍下,成長率卻隨著成長溫度的增加而減少。
碳嵌入砷化鎵的效率受成長條件的影響也將在本研究中被探討,四溴化碳流量的增加能提供更多的碳原子嵌入砷化鎵使其電洞濃度增加,最後在高流量的時候達到飽和,而V/Ш比的減少會增加砷化鎵的電洞濃度,這是因為砷化氫在低流量的情況下,有更多的碳原子能夠取代砷原子而佔據V族的位置。至於在低溫及高壓的成長條件下,能夠增加碳嵌入砷化鎵的效率。另外我們也發現砷化鎵的電洞遷移率會隨著電洞濃度的增加而減少,這是由於雜質散射增加的緣故。
最後我們將討論不同的碳摻雜濃度對晶格常數不匹配的影響,對碳摻雜砷化鎵而言,電洞濃度的增加會造成磊晶層與砷化鎵基板之間的晶格不匹配的增加,這是因為碳的原子半徑小於砷的原子半徑,當碳原子取代砷原子的位置而和鎵原子產生鍵結時,則磊晶層的晶格常數就會變的比砷化鎵基板小。
Carbon doping in GaAs epilayers grown by metalorganic chemical vapor deposition (MOCVD) using CBr4 was successfully obtained . The growth rate decreased as CBr4 increased due to the etching effect of HBr caused by Br radicals. The growth rate increased while V/III ratio and TMGa flow rate increased. In addition, the growth rate increased with increasing the growth pressure and eventually saturated above 100 mbar. In the growth temperature rage of 500 to 650 °C, the growth rate decreased with increasing growth temperature.
Carbon incorporation efficiency dependence on growth parameters was also investigated. The hole concentration was increasing with increasing CBr4 flow rate and eventually saturated at high flow rate. The hole concentration was also increasing with decreasing V/Ш ratio. This is because more carbon atoms can occupy As site on the growth surface under lower AsH3 flow rate. In addition, low growth temperature and high growth pressure can increase the carbon incorporation efficiency. Finally, we found the hole mobility decreased with increasing hole concentration due to the increasing of impurity scattering.
The lattice mismatch of carbon-doped GaAs epilayers dependence on hole concentration was also described in detail. With increasing the hole concentration, the lattice mismatch of carbon-doped GaAs layers became large and all samples had the negative values. This is probably due to the covalent radius of C atoms is smaller than As atoms. While carbon atoms incorporate in the GaAs, the As sites will be occupied by carbon atoms on the growth surface and results in the decrease of the lattice constant.
中文摘要 II
英文摘要 IV
誌謝 VI
目錄 VII
圖表索引 IX
第一章 前言 1
1.1 半導體材料 1
1.2 半導體結構 2
1.3 本質與外質半導體 2
1.4 直接與間接半導體 3
第二章 研究動機 5
2.1 以碳作為p型摻雜的好處 5
2.2 碳摻雜砷化鎵之應用 6
第三章 碳掺雜砷化鎵之磊晶成長 9
3.1 MOCVD系統簡介 9
3.2 MOCVD系統構造 10
3.3 MOCVD成長機制 11
第四章 碳掺雜砷化鎵之量測分析 15
4.1 雙晶格X-射線繞射系統 15
4.2 掃描式電子顯微鏡系統 17
4.3 霍爾量測系統 19
第五章 結果與討論 24
5.1 各種成長條件對成長率的影響 24
5.2 各種成長條件對電洞濃度的影響 29
5.3 摻雜濃度對晶格不匹配程度的影響 34
第六章 總結與未來工作 36
6.1 總結 36
6.2 未來工作 37
參考文獻 65
[1] S. Kim, Y. Kim, M.S. Kim, C.K. Kim, S.K. Min and C. Lee, J. Crystal Growth 141 (1994) 324.
[2] C.S. Son, S. Kim, B.D. Min, Y. Kin, E.K. Kim, S.K. Min and I.H. Choi, Jpn. J. Appl. Phys.l.35 (1996) 6562.
[3] H. Wu and Z. Li, J. Crystal Growth 167 (1996) 429.
[4] H. Ito, K. Kurishima and N. Watanabe, J. Crystal Growth 158 (1996) 430.
[5] T.F. Kuech, J.M. Redwing, J. Crystal Growth 145 (1994) 382.
[6] Y. Kohama, C. Amano, Y. Ohiso, T. Kurokawa, Jpn. J. Appl. Phys. 34 (1995) 3504.
[7] N. Kobayashi, T. Makimoto, Y. Horikoshi, Appl. Phys. Lett. 50 (1987) 1435.
[8] K. Saito, E. Tokumitsu, T. Akatsuka, M. Miyauchi, T. Yamada, M. Konagai, K. Takahashi, J. Appl. Phys. 64 (1988) 3975.
[9] M. Konagai, T. Yamada, T. Akatsuka, S. Nozaki, R. Miyake, K. Saito, T. Fukamachi, E. Tokumitsu, K. Takahashi, J. Crystal Growth 105 (1990) 359.
[10] M.C. Hanna, Z.H. Lu, A. Majerfeld, Appl. Phys. Lett. 58 (1991) 163.
[11] P. M. Enquist, Appl. Phys. Lett. 57 (1990) 2348.
[12] M. C. Hanna, Z. H. Lu and A. Majerfeld, Appl. Phys. Lett. 58 (1991) 164.
[13] M. L. Timmons, P. K. Chiang and S. V. Hattangady, J. Crystal Growth 77 (1986) 37.
[14] J. S. Lee, I. Kim, B. D. Choe and W. G. Jeong, J. Appl. Phys. 76 (1994) 5079.
[15] H. Q. Hou, B. E. Hammons and H. C. Chui, Appl. Phys. Lett. 70 (1997) 3600.
[16] L. Li, S. Gan, B. K. Han and R. F. Hicks, Appl. Phys. Lett. 72 (1998) 951.
[17] R. J. Malik, R. N. Nottenberg, E. F. Schubert, J. F. Walker and R. W. Ryan, Appl. Phys. Lett. 53 (1988) 2661.
[18] B. T. Cunningham, G. E. Stillman and G. S. Jackson, Appl. Phys. Lett. 56 (1989) 361.
[19] T. Makimoto, N. Kobayash, H. Ito and T. Ishibashi, Appl. Phys. Lett. 54 (1989) 39.
[20] L. W. Yang, P. D. Wright, P. R. Brusenback, S. K. Ko and A. Kaleta, Electron. Lett. 27 (1991) 1145.
[21] K. L. Lear, R. P. Schneider, K. D. Choquette, S. P. Kilcoyne, J. J. Figiel and J. C. Zolper, IEEE Photon. Tech. Lett. 6 (1994) 1053.
[22] Y. Kohama, Y. Ohiso, S. Fukushima and T. Kurokawa, IEEE Photon. Tech. Lett. 6 (1994) 918.
[23] T. Nakanisi, J. Crystal Growth, 50 (1981) 255.
[24] G. B. Stringfellow, “Organometallic Vapor-Phase Epitaxy:Theory and Practice,” (Secon Edition).
[25] C. A. Larsen and G. B. Stringfellow, J. Crystal Growth 75 (1986) 274.
[26] R. A. Young and R. V. Kalin, “Scanning Electron Microscopic Techniques for Characterization of Semiconductor Materials,” in: Microelectronic Processing: Inorganicmaterial Characterization, (L. A. Casper, ed.) American Chemical Soc., Sypm. Series 295, Washington, DC, 1986, pp. 49-74.
[27] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori and E. Lifshin, Scanning Electron Microscopic and X-ray Microanalysis, Plenum, New York, 1984.
[28] Dieter K. Schroder “Semiconductor Material and Device Characterization,” Ch1. and Ch8.
[29] K. Tateno, Y. Kohama and C. Amano, J. Crystal Growth 172 (1997) 5.
[30] 任興華, “有機金屬氣相磊晶系統之研究”, 碩士論文(民81).
[31] H. Schlichting, Boundary-Layer Theory 7th ed. (Mcgraw-Hill, New York, 1979).
[32] G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy-Theory and Practice (Academic Press, San Diego, 1989).
[33] N. Watanabe and H. Ito, J. Crystal Growth 178 (1997) 213.
[34] H. Hardtdegen, M. Hollfelder, R. Meyer, R. Carius, H. Munder, S. Frohnhoff, D. Szynka and H. Luth, J. Crystal Growth 124 (1992) 420.
[35] M. Konagai, T. Yamada, T. Akatsuka, K. Satito, E. Tokumitsu and K. T. Akahashi, J. Crystal Growth 98 (1989) 167.
[36] W. E. Hoke, P. J. Lemonias, D. G. Weir, H. T. Hendriks and G. S. Jackson, J. Appl. Phys. 69 (1991) 511.
[37] M. Ogirima, H. Saida, M. Suzuki and M. Maki, J. Electrochem. Soc. 125 (1978) 1879.
[38] D. L. Rode, W. R. Wagner and N. E. Schumaker, Appl. Phys. Lett. 30 (1977) 75.
[39] R. W. Grew, J. Crystal Growth 68 (1984) 44.
[40] W. Walukiewicz, J. Lagowski and H. C. Gatos, J. Appl. Phys. 53 (1982) 769.
[41] T. J. de Lyon, J. M. Woodall, M. S. Goorsky and P. D. Kirchner, Appl. Phys. Lett. 56 (1990) 1040.
[42] P. F. Fewster, in: Analysis of Microelectronic Materials and Devices, Eds. M. Grasserbauer and H. W. Werner (Wiley, New York, 1991) p. 58.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top