|
2.5參考文獻 Schwalbe, 1891: Denker, A., & Kahler, O.: Handbuch der Hals-, Nasen-Ohrenheilkunde, Die Krankheiten des Gehörorgans. 1 Teil. 1926: s. 103, Julius Springer. Berlin, J.F. Bergmann, München. 松島伯一: 現代日本人的鼔膜與外聽道的型態學觀察.醫學研究, 4: 889~907, 1930 Weveri, E.G. and Lawrence, M, Physiological Acoustics. 1954: Princeton University Rress. Rubin, L.R., Bromberg, B.E., Walden, R.H. and Adams, A.: An anatomic approach to the obtrusive ear. Plast. Reconstr. Surg., 29: 360~370, 1962 Green, J.D., Jr., et al., Three-dimensional reconstruction of the temporal bone. Laryngoscope, 1990. 100(1): p. 1-4. Jiang S, Dai P, Liu Y. 3-D morphological study of the temporal bone. Zhonghua Yi Xue Za Zhi 1997;77:579-582. Qiu MG, Zhang SX, Liu ZJ et al. Plastination and computerized 3D reconstruction of the temporal bone. Clin Anat 2003;16:300-303. Dai P, Liu Y, Jiang SC, Fang YY, Wang JZ, Yang WY. Stereo morphology of temporal bone and ear. Chin Med J (Engl) 2004;117:733-737. Qiu MG, Zhang SX, Liu ZJet al. Three-dimensional computational reconstruction of lateral skull base with plastinated slices. Anat Rec A Discov Mol Cell Evol Biol 2004;278:437-442. Wang H, Northrop C, Burgess B, Liberman MC, Merchant SN. Three-dimensional virtual model of the human temporal bone: a stand-alone, downloadable teaching tool. Otol Neurotol 2006;27:452-457. Ni Y, Sha Y, Dai P, Li H. Quantitative positioning of facial nerve based on three-dimensional CT image reconstruction of temporal bone. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2007;21:865-868, 872. Ni Y, Sha Y, Dai P, Li H. Quantitative morphology of facial nerve based on three-dimensional reconstruction of temporal bone. Otolaryngol Head Neck Surg 2008;138:23-29.
3.5參考文獻 Cilimburg A, Monz C, Kehoe S. PROFILE: Wildland Recreation and Human Waste: A Review of Problems, Practices, and Concerns. Environ Manage. 2000 Jun;25(6):587-598. Funnell WR, Laszlo CA. Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 1978;63:1461-1467. Funnell WR, Laszlo CA. A critical review of experimental observations on ear-drum structure and function. ORL J Otorhinolaryngol Relat Spec 1982;44:181-205. Funnell WR. On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum. J Acoust Soc Am 1983;73:1657-1661. Funnell WR. Low-frequency coupling between eardrum and manubrium in a finite-element model. J Acoust Soc Am 1996;99:3036-3043. Green, J.D., Jr., et al., Three-dimensional reconstruction of the temporal bone. Laryngoscope, 1990. 100(1): p. 1-4. Sudo, M., I. Sando, and C. Suzuki, Three-dimensional reconstruction and measurement study of human eustachian tube structures: a hypothesis of eustachian tube function. Ann Otol Rhinol Laryngol, 1998. 107(7): p. 547-54. 楊琮慧、余仁方 活體人耳道內音場之探討.2007年1月27日~1月28日於台南成大醫學院
4.5參考文獻 Van Camp, K. J. and Creten, W. L. Principles of acoustic impedance and admittance In: A. S. Feldman and L. A. Wilbur (Eds). Acoustic Impedance and Admittance: The Measurement of Middle Ear Function, pp.300-334, Williams & Wilkins, Baltimore, 1976. Stinson, M.R., The spatial distribution of sound pressure within scaled replicas of the human ear canal. J Acoust Soc Am, 1985. 78(5): p. 1596-602. Gan, R.Z., B. Feng, and Q. Sun, Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng, 2004. 32(6): p. 847-59. Munro, K.J. and L.M. Buttfield, Comparison of real-ear to coupler difference values in the right and left ear of adults using three earmold configurations. Ear Hear, 2005. 26(3): p. 290-8. Stinson, M.R. and G.A. Daigle, Comparison of an analytic horn equation approach and a boundary element method for the calculation of sound fields in the human ear canal. J Acoust Soc Am, 2005. 118(4): p. 2405-11. Gan, R.Z., et al., Acoustic-structural coupled finite element analysis for sound transmission in human ear--pressure distributions. Med Eng Phys, 2006. 28(5): p. 395-404. Tamara Raveh, Michael M, and Martino H.A, The Elastic Properties of Canaerous Skin: Poisson's Ratio and Young's Modulus, Elastic Properties of Cancerous Skin., 2004. Vol 6 p. 753~755 Shanks JE and Lilly DJ, “An evaluation of tympanometric estimates of ear canal volume,” J. Speech Hear Res. 24(4), 557-566 (1981). 楊琮慧、余仁方 活體人耳道內音場之探討.2007年1月27日~1月28日於台南成大醫學院
5.5參考文獻 Okpojo AO. Advances in earmold technology: one-stage (direct) approach. J Am Acad Audiol 1992;3:142-144. Byrne D, Sinclair S, Noble W. Open earmold fittings for improving aided auditory localization for sensorineural hearing losses with good high-frequency hearing. Ear Hear 1998;19:62-71. Tognola G, Parazzini M, Svelto C, Galli M, Ravazzani P, Grandori F. Design of hearing aid shells by three dimensional laser scanning and mesh reconstruction. J Biomed Opt 2004;9:835-843. Ciocca L, Scotti R. CAD-CAM generated ear cast by means of a laser scanner and rapid prototyping machine. J Prosthet Dent 2004;92:591-595. Ciocca L, Mingucci R, Gassino G, Scotti R. CAD/CAM ear model and virtual construction of the mold. J Prosthet Dent 2007;98:339-343. Subburaj K, Nair C, Rajesh S, Meshram SM, Ravi B. Rapid development of auricular prosthesis using CAD and rapid prototyping technologies. Int J Oral Maxillofac Surg 2007;36:938-94.
6.5參考文獻 Funnell WR. On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum. J Acoust Soc Am 1983;73:1657-1661. Williams KR, Lesser TH. A finite element analysis of the natural frequencies of vibration of the human tympanic membrane. Part I. Br J Audiol 1990;24:319-327. Williams KR, Lesser TH. Natural frequencies of vibration of a fibre supported human tympanic membrane analysed by the finite element method. Clin Otolaryngol Allied Sci 1993;18:375-386. Williams KR, Blayney AW, Lesser TH. A 3-D finite element analysis of the natural frequencies of vibration of a stapes prosthesis replacement reconstruction of the middle ear. Clin Otolaryngol Allied Sci 1995;20:36-44.
7.5參考文獻 Williams KR, Lesser TH. A finite element analysis of the natural frequencies of vibration of the human tympanic membrane. Part I. Br J Audiol 1990;24:319-327. Williams KR, Lesser TH. Natural frequencies of vibration of a fibre supported human tympanic membrane analysed by the finite element method. Clin Otolaryngol Allied Sci 1993;18:375-386. Williams KR, Blayney AW, Lesser TH. A 3-D finite element analysis of the natural frequencies of vibration of a stapes prosthesis replacement reconstruction of the middle ear. Clin Otolaryngol Allied Sci 1995;20:36-44. Gan, R.Z., B. Feng, and Q. Sun, Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng, 2004. 32(6): p. 847-59. Stinson, M.R. and G.A. Daigle, Comparison of an analytic horn equation approach and a boundary element method for the calculation of sound fields in the human ear canal. J Acoust Soc Am, 2005. 118(4): p. 2405-11. Gan, R.Z., et al., Acoustic-structural coupled finite element analysis for sound transmission in human ear--pressure distributions. Med Eng Phys, 2006. 28(5): p. 395-404.
|