跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 18:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:官啟玄
研究生(外文):Chi-Hsuan Kuan
論文名稱:以TSK機率模糊類神經網路控制之磷酸鋰鐵電池儲能系統之研製
論文名稱(外文):Development of TSK-Type Probabilistic Fuzzy Neural Network Control for LiFePO4 Battery Storage System
指導教授:林法正林法正引用關係
指導教授(外文):Faa-Jeng Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:102
中文關鍵詞:三相交流-直流轉換器TSK 機率模糊類神經網路磷酸鋰鐵電池組數位訊號處理器
外文關鍵詞:TSK-Type probabilistic fuzzy neural network (TSKthree-phase AC-DC converterdigital signal processor (DSP)LiFePO4 battery
相關次數:
  • 被引用被引用:6
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一以數位訊號處理器為基礎之TSK 機率模糊類神經網路智慧型控制器以控制磷酸鋰鐵電池儲能系統,此電池儲能系統具有電池管理系統與雙向功率流動之三相交流-直流轉換器,本電池儲
能系統並可對電網以實虛功控制策略進行併網及充電。為了要改善功率在命令變動時之暫態響應,本文因此採用TSK 機率模糊類神經網路控制器以取代傳統的比例積分控制器。本文將詳細介紹TSK 機率模糊類神經網路的架構以及線上學習法則,而所提出之智慧型電池儲能系統皆實現於以32 位元定點運算之數位訊號處理器
TMS320F28035 上。另一方面,為了增強數位訊號處理器之運算效
率,本論文將以組合語言撰寫所推導之控制法則。最後,將由實驗結果驗證所提出之TSK 機率模糊類神經網路控制器實現在此電池儲能系統上之控制性能。
A digital signal processor (DSP)-based TSK-Type probabilistic fuzzy neural network (TSKPFNN) is proposed in this thesis to control a 4 LiFePO battery
storage system. The storage system includes 4 LiFePO battery module with battery management system (BMS) and bidirectional power flow three-phase AC-DC converter. Moreover, the designed storage system adopts active and
reactive power control for grid connection. Furthermore, to improve the transient of command variation, a TSKPFNN controller is proposed to replace the traditional proportional-integral (PI) controller. The network structure and the online learning algorithms of the TSKPFNN controller are introduced in detail. In addition, all the control algorithms for the proposed battery storage
system are realized in a 32-bit fixed point DSP, TMS320F28035, using assembly language for enhancing the calculate efficiency of the DSP. Finally, the control
performances of the proposed TSKPFNN control system are evaluated by some experimental results.
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 4
1.3 論文大綱 6
第二章 鋰離子電池與電池管理系統 8
2.1 簡介 8
2.2 電池相關名詞定義 8
2.3 鋰離子電池原理 11
2.3.1 鋰離子電池之電化學原理 11
2.3.2 鋰離子電池之特性與規格 14
2.4 二次電池充電法簡介 16
2.4.1 定電壓充電法 16
2.4.2 定電流充電法 16
2.4.3 混合式充電法 17
2.4.4 脈衝式充電法 17
2.5 鋰離子電池模型與其模擬 18
2.5.1 鋰離子電池模型 18
2.5.2 模擬鋰離子電池模型 20
2.6 電池管理系統 21
2.6.1 保護裝置 22
2.6.2 電池平衡裝置 22
2.6.3 本論文之電池管理系統 24
第三章 以數位訊號處理器為基礎之磷酸鋰鐵電池儲能系統控制晶片 26
3.1 數位訊號處理器TMS320F28035 26
3.1.1 數位訊號處理器TMS320F28035之功能簡介 26
3.1.2 記憶體規劃 28
3.2 TMS320F28035週邊功能介紹 29
3.2.1 增強型脈波寬度調變模組 29
3.2.2 中斷處理之流程 31
3.2.3 類比/數位轉換器 32
3.2.4 串列週邊介面模組 33
第四章 磷酸鋰鐵電池儲能系統架構與控制策略之研製 36
4.1 簡介 36
4.2 三相座標軸轉換 37
4.2.1 靜止座標軸轉換 40
4.4.2 靜止座標軸與同步旋轉座標之轉換關係 41
4.3 三相交流-直流轉換器電路模型 43
4.4 三相電壓相位同步法 46
4.4.1 三相線電壓軸轉換方程式 46
4.4.2 電壓濾波法 46
4.4.3 零交越偵測法 47
4.4.4 鎖相迴路法 48
4.5 實虛功控制與電流控制 50
4.6 控制器設計 52
4.7 磷酸鋰鐵電池儲能系統之模擬 57
第五章 TSK機率模糊類神經網路控制器與模擬 64
5.1 簡介 64
5.2 TSK機率模糊類神經網路 65
5.2.1 TSK機率模糊類神經網路之描述 65
5.2.2 線上學習法則 67
5.2.3 TSK機率模糊類神經網路之收斂性分析 70
5.3 TSK機率模糊類神經網路控制器之模擬 73
第六章 硬體系統說明與實驗結果 76
6.1 簡介 76
6.2 數位訊號處理器之週邊硬體電路 76
6.2.1 電壓感測電路 77
6.2.2 電流感測電路 77
6.2.3 數位訊號處理器之類比數位轉換器保護電路 78
6.2.4 功率級保護電路 79
6.2.5 人機介面電路 80
6.2.6 類比訊號輸出模組 81
6.3 系統軟體流程圖 83
6.4 實驗結果與說明 84
6.4.1 鎖相迴路實驗結果與說明 86
6.4.2 穩態時之實驗結果 87
6.4.3 以比例積分控制器控制功率外迴路之實驗結果 88
6.4.4 以TSK機率模糊類神經網路控制器控制功率外迴路之實驗結果 91
第七章 結論與未來展望 95
7.1 結論 95
7.2 未來展望 95
參考文獻 96
作者簡歷 101
[1] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy storage systems for transport and grid applications,” IEEE Trans. Indust. Electron., vol. 26, no. 3, pp. 886-896, Dec. 2011.
[2] B. Carter, J. Matsumoto, A. Prater, and D. Smith, “Lithium ion battery performance and charge control,” in Proc. IECEC-96 Conf., vol. 1, pp. 363-368, 1996.
[3] J. Cao and A. Emadi, “Batteries need electronics,” IEEE Indust. Electron. Magaz., vol. 5, no. 1, pp. 27-35, Mar. 2011.
[4] H. Qian, J. Zhang, J. S. Lai, and W. Yu, “A high-efficiency grid-tie battery energy storage system,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 886-896, Mar. 2011.
[5] M. P. Kazmierkowski, M. Jasinski, and G. Wrona, “DSP-based control of grid-connected power converters operating under grid distortions,” IEEE Trans. Indust. Informat., vol. 7, no. 2, pp. 204-211, May 2011.
[6] 徐聖宇,實現具有單相功率因素修正之高功率全數位電池充電器,碩士論文,國立台北科技大學電力電子產業研發碩士專班,台北市,2009。
[7] 蔡瀚章,智慧型控制數位化鋰錳電池充電器之研製,碩士論文,國立中央大學電機工程學系,桃園,2011。
[8] Z. Chen, M. Ding, and J. Su, “Modeling and control for large capacity battery energy storage system,” in Proc. IEEE DRDT, pp. 1429-1436, 2011.
[9] A. Timbus, R. Teodorescu, F. Blaabjerg, and M. Liserre, “Synchronization methods for three phase distributed power generation systems. An overview and evaluation,” IEEE Power Electronics Specialists Conf., pp. 2474-2481, 2005.
[10] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398-1409, Oct. 2006.
[11] R. D. Middlebrook and S. Cuk, “A general unified approach to modeling switching-converter power stage,” in Proc. IEEE Power Electronics Specialists Conf., pp. 73–86, 1976.
[12] P. R. K. Chetty, “Modeling and design of switching regulators,” IEEE Trans. Aerospace and Electronic Systems, vol. AES-18, no. 3, pp. 333-344, 1982.
[13] L. K. Wong, F. H. F. Leung, and P. K. S. Tam, “A simple large-signal nonlinear model for fast simulation of zero-current-switch quasi-resonant converters,” in Proc. IEEE PESC ''96 Conf., vol. 2, pp. 1087-1091, 1996.
[14] H. K. Lam and S. C. Tan, “Stability analysis of fuzzy-model-based control systems: application on regulation of switching DC–DC converter,” IET Control Theory Appl., vol. 3, no. 8, pp. 1093-1106, 2009.
[15] F. J. Lin, W. J. Hwang, and R. J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Trans. Fuzzy Syst., vol. 7, no. 1, pp. 41-52, 1999.
[16] W. Yu, and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411-420, 2004.
[17] F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 53, no. 9, pp. 1649-1661, 2006.
[18] Y. Gao and M. J. Er, “An intelligent adaptive control scheme for postsurgical blood pressure regulation,” IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 475-483, 2005.
[19] F. J. Lin, P. K. Huang, and C. C. Wang, “An induction generator system using fuzzy modeling and recurrent fuzzy neural network,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 260-271, 2007.
[20] I. B. Kucukdemiral and G. Cansever, “Formalization of a noval Sugeno type adaptive fuzzy sliding mode controller for a class of nonlinear systems,” in Proc. IEEE International Conference Mechatronics, pp. 717-720, 2005.
[21] D. F. Specht, “Probabilistic neural network,” Neural Netw., vol. 3, no. 1, pp. 190-118, 1990.
[22] K. Z. Mao, K. -C. Tan, and W. Ser “Probabilistic neural-network structure determination for pattern classification,” IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 1009-1016, 2000.
[23] J. C. Pidre, C. J. Carrillo, and A. E. F. Lorenzo, “Probabilistic model for mechanical power fluctuations in asynchronous wind parks,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 761-768, 2003.
[24] M. Tripathy, R. P. Maheshwari, and H. K. Verma, “Power transformer differential protection based on optimal probabilistic neural network,” IEEE Trans. Power Del., vol. 25, no. 1, pp. 102-112, 2010.
[25] Z. Liu, and H. X. Li, “A probabilistic fuzzy logic system for modeling and control,” IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 848-859, 2005.
[26] H. X. Li, and Z. Liu, “A probabilistic neural-fuzzy learning system for stochastic modeling,” IEEE Trans. Fuzzy Syst., vol. 16, no. 4, pp. 898-908, 2008.
[27] 杜冠賢,陳耀銘,吳財福,姜士凱,鋰離子電池充電器研製,第六屆台灣電力電子研討會,2007。
[28] 石金福,張志敏,電動機車用鋰離子電池之特性與發展,電機月刊雜誌,第十二卷,第九期,2002。
[29] Z. M. Salameh, M. A. Casacca, and W. A. Lynch, “A mathematical model for lead-acid batteries,” IEEE Trans. Energy Conversion, vol. 7, no. 1, pp. 93-98, Mar. 1992.
[30] S. Li and B. Ke, “Study of battery modeling using mathematical and circuit oriented approaches,” in Proc. IEEE Power and Energy Society General Meeting, pp. 1-8, 2011.
[31] O. Tremblay, L. A. Dessaint, and A. I. Dekkiche, “A generic battery model for the dynamic simulation of hybrid electric vehicles,” in Proc. IEEE Vehicle Power and Propulsion Conference, pp. 284-289, 2007.
[32] Matlab,SimPowerSystems,http://www.mathworks.com/。
[33] J. K. Kim, M. S. Kang, S. B. Oh, and E. H. Kim, “New control scheme of lithium-polymer battery units using single phase multi-level converter,” in Proc. IEEE ICPE and ECCE Conf., pp. 2997-3000, 2011.
[34] M. Einhorn, W. Roessler, and J. Fleig, “Improved performance of serially connected Li-ion batteries with active cell balancing in electric vehicles,” IEEE Trans. Vehicu. Techno., vol. 60, no. 6, pp. 2448-2457, July 2011.
[35] 電動車先進動力系統EV-APDS研討會,2011。
[36] Texas Instruments Inc., “TMS320F28030/28031/28032/28033/28034/ 28035 piccolo microcontrollers, rev B”, 2009.
[37] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo enhanced pulse width modulator (ePWM) module, rev C”, 2009.
[38] Texas Instruments Inc., “TMS320F2803x piccolo system control and interrupts, rev A”, 2009.
[39] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo analog-to- digital converter (ADC) and comparator, rev B”, 2009.
[40] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo serial peripheral interface (SPI), rev B”, 2009.
[41] 黃治瑋,應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達伺服驅動系統,碩士論文,國立中央大學電機工程學系,桃園,2010。
[42] T. Kinjo, T. Senjyu, N. Urasaki, and H. Fujita, “Output levelling of renewable energy by electric double-layer capacitor applied for energy storage system,” IEEE Trans. Energy Conversion., vol. 21, no. 1, pp. 221-227, Mar. 2006.
[43] C. Shen, L. Zhang, M. L. Crow, and S. Atcitty, “Integration of a statcom and battery energy storage,” IEEE Trans. Power Systems, vol. 16, no. 12, pp.254-260, May 2001.
[44] 黃仲欽,交流電動機控制,交流電動機課程講義,民國97年。
[45] V. Blasko and V. Kaura, “A new mathematical model and control of a three-phase AC–DC voltage source converter,” IEEE Trans. Power Electron., vol. 12, no. 1, pp. 116-123, Jan. 1997.
[46] N. Mohan, T. M. Undeland, W. P. Robbins, Power electronics, 1989.
[47] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for li-ion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782-3794, Aug. 2012.
[48] AD210 application note, Analog Devices Co.
[49] LA-55P application note, LEM Co.
[50] MCP4922 application note, Microchip Inc.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top